|
|
Результат поиска |
Поиск книг, содержащих: Theorema egregium
Книга | Страницы для поиска | Громол Д., Клингенберг В., Мейер В. — Риманова геометрия в целом | 122, 124 | Блашке В. — Введение в дифференциальную геометрию | 74 | Taylor M.E. — Partial Differential Equations. Qualitative studies of linear equations (vol. 2) | 477, 481 | Berger M. — A Panoramic View of Riemannian Geometry | 119 | Lee J.M. — Riemannian Manifolds: an Introduction to Curvature | 6, 143 | Millman R.S., Parker G.D. — Elements of Differential Geometry | 143, 149 | Montiel S., Ros A. — Curves and Surfaces | 68, 205, 210 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis II: Integration | 409 | Duistermaat J.J., Kolk J.A.C. — Multidimensional Real Analysis I(Cambridge Studies in Advanced Mathematics #86), Vol. 1 | 409 | Coxeter H.S.M. — Introduction to Geometry | 366—368 | O'Neill B. — Elementary differential geometry | 273—275 | Kilmister C.W. — General theory of relativity | 105 | Kühnel W., Hunt B. — Differential Geometry: Curves - Surfaces - Manifolds | 148, 151, 158, 239 | Dubrovin B.A., Fomenko A.T., Novikov S.P. — Modern Geometry - Methods and Applications. Part 1. The Geometry of Surfaces, Transformation Groups and Fields | 77, 306 | Guggenheimer H.W. — Differential Geometry | 212, 234 | Berry M. — Principles of cosmology and gravitation | 160—163 | Farin G. — Curves and surfaces for computer aided geometric design | 355 | Alekseevskij D.V., Vinogradov A.M., Lychagin V.V. — Geometry I: Basic Ideas and Concepts of Differential Geometry | 17, 36 | Spivak M. — A Comprehensive Introduction to Differential Geometry. Volume 3 | 78, 98 | Audin M. — Geometry | 291 | Audin M. — Geometry | 291 | Schulz F., Dold A. (Ed), Eckmann B. (Ed) — Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampere Equations in Two Dimensions | 107, 111 | Taylor M.E. — Partial Differential Equations. Nonlinear Equations (vol. 3) | 146 | Lemm J.M. — Mathematical elasticity. Theory of shells | 131, 136 | Frankel T. — The geometry of physics: an introduction | 231 | Zeidler E. — Oxford User's Guide to Mathematics | 424, 526, 769, 786 | Frankel T. — The geometry of physics: An introduction | 231 | Berry M.V. — Principles of Cosmology and Gravitation | 160—163 | Klingenberg W. — A Course in Differential Geometry (Graduate Texts in Mathematics) | 64 | Odifreddi P., Sangalli A., Dyson F. — The Mathematical Century: The 30 Greatest Problems of the Last 100 Years | 105 |
|
|