|
|
Результат поиска |
Поиск книг, содержащих: Hopf bundle
Книга | Страницы для поиска | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 147.E | Lee J.M. — Differential and Physical Geometry | 251, 463 | Potier J.L. — Lectures on vector bundles | 10 | Ward R.S., Wells R.O. — Twistor geometry and field theory | 278 | Hatcher A. — Algebraic Topology | 361, 375, 377, 378, 392 | Husemoller D. — Fibre Bundles | 142, 143 | Dupont J.L. — Curvature and Characteristic Classes | 99 | Dimca A. — Singularities and Topology of Hypersurfaces | 32, 139, 142 | Besse A.L. — Einstein Manifolds | 332, 335, 383 | Ito K. — Encyclopedic Dictionary of Mathematics | 147.E | Fischer G. — Complex Analytic Geometry | 165 | Lee J.M. — Differential and physical geometry | 251, 463 | Knus M.-A. — Quadratic and hermitian forms over rings | 498 | Spanier E.H. — Algebraic Topology | 91 | Faddeev L.D., Takhtajan L., Reyman A.G. — Hamiltonian methods in the theory of solitons | 320 | Frankel T. — The geometry of physics: an introduction | 473, 474 | Fritzsche K., Grauert H. — From Holomorphic Functions To Complex Manifolds | 238 | Morandi G. — Statistical Mechanics: An Intermediate Course | 211, 221, 259 | Rempel S., Schulze B.-W. — Index Theory of Elliptic Boundary Problems | 21, 34, 261 | Frankel T. — The geometry of physics: An introduction | 473, 474 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 100 | Isham C. — Modern Differential Geometry for Physicists | 222 |
|
|