|
|
Результат поиска |
Поиск книг, содержащих: Orientable manifold
Книга | Страницы для поиска | Guillemin V., Pollack A. — Differential topology | 96 | Oprea J. — Differential Geometry and Its Applications | 315—316 | Springer G. — Introduction to Riemann Surfaces | 107 | Lefschetz S. — Algebraic topology | 198, 204 | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 362 | Gracia-Bondia J.M., Varilly J.C., Figueroa H. — Elements of Noncommutative Geometry | 371, 499 | Hatcher A. — Algebraic Topology | 234 | Varadarajan V.S. — Lie Groups, Lie Algebras, and Their Representations | 12 | Ratcliffe J.G. — Foundations of Hyperbolic Manifolds | 360 | Szekeres P. — A Course in Modern Mathematical Physics: Groups, Hilbert Space and Differential Geometry | 481 | Kirillov A.A. — Elements of the Theory of Representations | 67 | Fomenko А.Т., Mishehenko A.S. — A Short Course in Differential Geometry and Topology | 151 | Tamura I. — Topology of lie groups, I and II | 57 | Whitehead G.W. — Elements of Homotopy Theory | 507 | Narasimhan R. — Analysis on Real and Complex Manifolds | 94 | Goffman C. — Calculus of several variables | 135 | Lefschetz S. — Introduction to topology | 187 | Massey W.S. — A basic course in algebraic topology | 3—5, 352 | Weeks J.R. — The shape of space | 58 | Spanier E.H. — Algebraic Topology | 294—297 | Springer G. — Introduction to Riemann Surfaces | 107 | de Leon M., Rodrigues P.R. — Methods of differential geometry in analytical mechanics | 62 | Frankel T. — The geometry of physics: an introduction | 83 | Naber G.L. — Topology, Geometry and Gauge Fields | 8, 241 | Behnke H., Bachmann F., Fladt K. — Fundamentals of mathematics. Volume III. Analysis | 140, 185 | Pier J.-P. — Mathematical Analysis during the 20th Century | 266 | Spivak M. — Calculus on Manifolds: A Modern Approach to Classical Theorems of Advanced Calculus | 119 | Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 72, 124ff., 129, 139, 205, 277 | Morandi G. — Statistical Mechanics: An Intermediate Course | 36 | Nikolsky S.M. — A Course of Mathematical Analysis (Vol. 2) | 296 | Frankel T. — The geometry of physics: An introduction | 83 | Flanders H. — Differential Forms with Applications to the Physical Sciences | 51 | Azcarraga J., Izquierdo J. — Lie groups, Lie algebras, cohomology and some applications in physics | 30, 39 |
|
|