|
|
Результат поиска |
Поиск книг, содержащих: Dirichlet kernel
Книга | Страницы для поиска | Taylor M.E. — Partial Differential Equations. Basic theory (vol. 1) | 184 | Hunter J.K., Nachtergaele B. — Applied Analysis | 183 | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 159.B | Allen R.L., Mills D.W. — Signal analysis. Time, frequency, scale and structure | 392, 526 | Benson D. — Mathematics and music | 48 | Katznelson Y. — Introduction to Harmonic Analysis | 13 | Folland J.B. — Real Analysis: Modern Techniques and Their Applications | 264 | Debnath L. — Linear Partial Differential Equations for Scientists and Engineers | 203 | Young R.M. — An Introduction to Non-Harmonic Fourier Series, Revised Edition | 199 | Strauss W.A. — Partial Differential Equations: An Introduction | 132—133, 314, 317 | Egorov Y.U. (Ed), Gamkrelidze R.V. (Ed) — Partial Differential Equations I: Foundations of the Classical Theory | 51 | Kahane J.P., Bollobas B. (Ed) — Some Random Series of Functions | 110 | Lang S.A. — Undergraduate Analysis | 311 | Eidelman Y., Milman V., Tsolomitis A. — Functional Analysis. An Introduction | 139 | Ito K. — Encyclopedic Dictionary of Mathematics | 159. B | Milovanovic G.V., Mitrinovic D.S., Rassias T.M. — Topics in Polynomials: Extremal Problems, Inequalities, Zeros | 148 | Rudin W. — Real and complex analysis | 101 | Stakgold I. — Green's Functions and Boundary Value Problems | 113, 114, 121, 133 | Kammler D.W. — First Course in Fourier Analysis | 66, 187, 219, 474 | Strichartz R.S. — The way of analysis | 533, 539, 551 | Lyons R.G. — Understanding Digital Signal Processing | 100—103 | Goswami J.C., Chan A.K. — Fundamentals of Wavelets : Theory, Algorithms, and Applications | 55 | Young R.M. — An Introduction to Nonharmonic Fourier Series | 199 | Asmar N.H. — Partial Differential Equations with fourier series and boundary value problems | 78 | Pinsky M.A. — Introduction to Fourier Analysis and Wavelets | 15, 25, 1, 12, 140, 223 | Egorov Y.V., Shubin M.A. — Partial Differential Equations I (Foundations of the Classical) | 51 | Wheeden R.L., Zygmund A. — Measure and integral. An introduction to real analysis | 222 | Krantz S.G. — Handbook of Real Variables | 136 | Estrada R., Kanwal R.P. — A distributional approach to asymptotics theory and applications | 356 | Bridges D.S. — Foundations Of Real And Abstract Analysis | 288 | Stavroulakis I.P., Tersian S.A. — Partial Differential Equations: An Introduction with Mathematica and Maple | 213 | Duistermaat J.J, Kolk J.A.C. — Distributions: theory and applications | 259 | Rice J.R. — Linear Theory. Volume 1. The approximation of functions | 125, 130 | Aliprantis C. — Principles of real analysis | 316 | Goswami J., Chan A. — Fundamentals of Wavelets. Theory, Algorithms, and Applications | 55 | Dym H., McKean H.P. — Fourier Series and Integrals | 31—35, 40, 41, 45, 260 | Gelbaum B.R. — Problems in Real and Complex Analysis | 5.1. 54 | Lang S. — Undergraduate analysis | 311 | Bhatia R. — Fourier Series (Mathematical Association of America Textbooks) | 29 | Kuttler K.L. — Modern Analysis | 47 | Stakgold I. — Green's functions and boundary value problems | 113, 114, 121, 133 | Jorsboe O.G., Mejlbro L. — The Carleson-Hunt Theorem on Fourier Series | 62 | Hewitt E., Stromberg K. — Real and abstract analysis: a modern treatment of the theory of functions of a real variable | 292 | Prössdorf S., Silbermann B. — Numerical analysis for integral and related operator equations | 75 | Dym H., McKean H. — Fourier Series and Integrals (Probability & Mathematical Statistics Monograph) | 31—35, 40, 41, 45, 260 | Hammerlin G., Hoffmann K.-H., Schumaker L.L. — Numerical Mathematics | 132, 135 | Zorich V.A., Cooke R. — Mathematical analysis II | 532, 557 | Zorich V. — Mathematical Analysis | 532, 557 | Odyniec W. — Minimal Projections In Banach Spaces | 4 | Vretblad A. — Fourier Analysis and Its Applications (Graduate Texts in Mathematics) | 81, 87, 93 |
|
|