Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)

Авторы: Dunford N., Schwartz J.T., Bade W.G.

Аннотация:

Because oC the large amount of material presented, we have been prevented from including all the topics originally announced for Part II of Linear Operators. The present volume includes all of the material of our earlier announcement associated with the classical spectral theorem for self adjoint operators in Hilbert space. While there are some isolated discussions of nousel fad joint operators, such as that giving the completeness of the generalized eigenfunctions of Hilbert-Schmidt operators in Section ХТ.в, the general theory of spectral operators and the discussion of nonselfadjoint differential boundary value problems have been postponed for inclusion in the forthcoming Part III of this treatise.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 1084

Добавлена в каталог: 27.02.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
rba(S)      261
rca(S)      240
Real numbers, extended      3
Real numbers, topology of      11
Real part of a complex number      4
Real vector space      38 49
Rectifiable curve      225
Reflexivity, alternate proof      V.7.11 436
Reflexivity, criterion for      V.4.7 425
Reflexivity, definition      II.3.22 66
Reflexivity, discussion      88
Reflexivity, examples of reflexive space      IV.15
Reflexivity, properties      II.3.23—II.3.24 67 II.3.28—II.3.29
Reflexivity, remarks on      463 473
Regular B-space      see "Reflexivity"
Regular closure      462—463
Regular convexity      462—463
Regular element in a B-algebra      IX.1.2 861
Regular element in a ring      40
Regular method of summability      II.4.35 75
Regular point of a differential equation      XIII.6 1432
Regular set function      see also "Set function"
Regular set function, additional properties      III.9.19—III.9.22 170
Regular set function, countable additivity and regularity      III.5.13 138
Regular set function, definition      III.5.11 137
Regular set function, extension of      III.5.14 138
Regular set function, products of      III.13.7 223
Regular set function, regularity of variations      III.5.12 137
Regular set function, vector-valued measure      IV.13.75 350
Regular singularity of a differential equation      XIII.6 1432 XIII.6
Regular topological space, completely regular      VI.6.21—VI.6.22 276
Regular topological space, definition      I.5.1 15
Regular topological space, normality of, with countable base      24
Reid, W.T.      936
Relative topology, definition      I.4.12 12
Rellich, F.      372 373 611—612 927 929 1263 1592 1593 1604
Representation as a space of continuous functions      IV.6.18—IV.6.22 274—276 IV.7.6 394—397
Representation as a space of integrable functions      394—396
Representation for Boolean algebras      44
Representation for Boolean rings with unit      I.12.1 41
Representation for conjugate spaces      IV.15
Representation for unitary groups of operators      XII.6.1 1243
Representation for vector-valued integrals      III.11.17 198
Representation of a vector-valued function      196
Representation of finitely additive set functions      IV.9.10—IV.9.11 312 IV.9.13
Representation of operators, in $L_1$      VI.8 540—541
Representation of operators, in C      VI.7 539—540
Representation of operators, in other spaces      542—552
Resolution of the identity      X.I 889
Resolution of the identity for a normal operator      X.2.5 898
Resolution of the identity for an unbounded operator      XII.2.4 1196
Resolution of the identity, formula for      X.6.1 920 XII.2.10
Resolvent of an element in a B-algebra      IX.1.2 861
Resolvent, definition      VII.3.1 566
Resolvent, equation      VII.3.6 566
Resolvent, set      VII.3.1 566
Resolvent, set of an element in a B-algebra      IX.1.2 861
Resolvent, study of      VII.3
Rickart, C.E.      233 234 541 543 883 886
Riemann, B.      1508 1592
Riesz convexity theorem      VI.10 VI.10.11
Riesz convexity theorem, applications and extensions      VI.11
Riesz convexity theorem, inequality of      XI.1.8 1059
Riesz convexity theorem, remarks on      541—542
Riesz, F.      79 80—81 85—86 88 265 372—373 380 387 388 392 395 538 539 606 608 609 659 728—729 926 927 928 929 933 935 1268 1269 1272 1273 1274
Riesz, M.      388 525 532 541 1059 1164
Rinehart, R.F.      607
Ring (algebraic), Boolean      40
Ring (algebraic), definition      35
Ring (algebraic), properties      40—44
Ring (algebraic), study of      I.11—I.12
Riss, J.      1161
Ritz, W.      928
Roberts, B.D.      93
Rogers, C.A.      93
Rohlin, V.A.      929 1269
Rosenblatt, M.      406
Rosenbloom, P.C.      47 612
Rosenfeld, N.S.      1614 1615
Rosenthal, A.      232 234—235 390
Rosser, J.B.      47—48
Rota, extension theory of      XIII.10.F 1612
Rota, G.C.      1612
Rotational invariance      402—403
Rotho, E.H.      92 470
Rubin, H.      393
Rudin, W.      385
Ruston, A.F.      473 610
Rutickii, Ya.B.      400
Rutman, M.      94 395 466
Rutovitz, D.      1616 1621
Ryll-Nardzewski, C.      683 724 729
S      243
Saks decomposition of a measure space      IV.9.7 308
Saks, S.      80 82 158 232 233—235 308 380 390 392 462 720
Salem, R.      542
San Juan, R.      387
Sargent, W.L.C.      81 400
Scalar product in a Hilbert space      IV.2.26 242
Scalars      36
Schaeffer, J.J.      931 932 933 934
Schaefke, F.W.      94 612
Schatten, R.      90 1163
Schauder, J.      83 84 93—94 456 470 485 539 609
Schmidt, E.      79 88 539 609 1087 1260 1269 1584 1590
Schoenberg, I.J.      380 393—394 728 1274
Schreiber, M.      932
Schreier, O.      79 462
Schroeder, J.      612
Schroedinger, E.      611 1585
Schur, I.      532
Schur, J.      77 388
Schwartz, H.M.      391
Schwartz, J.T.      375 387 389 392 540 543 612 1269 1588
Schwartz, L.      82 84 399 401 402 466 611 1161 1162 1645
Schwarz inequality      IV.4.1 248
Schwarz, H.A.      248 372
Schwerdtfeger, H.      606
Sears, D.B.      1590 1591 1597 1604 1607 1616 1619
Sebastiao e Silva, J.      235 399
Segal, I.E.      384 727 928 929 1160 1161 1269
Seidel, P.L.      383
Seitz, F.      1592
Self adjoint operator      X.4.1 906
Self adjoint subspace      XII.4.14 1230
Semi-bounded operators, definition      XII.5.1 1240
Semi-group of operators, definition      VIII.1.1 614
Semi-group of operators, infinitesimal generator of      VIII.1.6 619
Semi-group of operators, k-parameter      VIII.7.8 693
Semi-group of operators, perturbation theory of      630—639
Semi-group of operators, strongly continuous      685
Semi-group of operators, strongly measurable      685
Semi-group of operators, study of      VIII.1—VIII.3
Semi-simple B-algebra      IX.2.5 869
Semi-variation of a vector-valued measure, definition      IV.10.3 320
Semi-variation of a vector-valued measure, properties      IV.10.4 320
Separability and compact sets      V.7.15—V.7.16 437
Separability and compact sets, criterion for      V.7.36 438
Separability and compact sets, of C      V.7.17 437
Separability and embedding      V.7.12 436 V.7.14
Separability and metrizability      V.5.1—V.5.2 426
Separable linear manifolds      II.1.5 50 see
Separable linear manifolds in $L_p$      III.8.5 168 III.9.6
Separable linear manifolds in C      IV.13.16 340
Separable sets      I.6.11 21 see
Separably-valued      III.1.11 100
Separation of convex sets in finite dimensional spaces      V.7.24 437
Separation of convex sets in linear spaces      V.1.12 412
Separation of convex sets in linear topological spaces      V.2.7—V.2.13 417—418
Separation of convex sets, counter examples      V.7.25—V.7.28 437
SEQUENCE      see also "Convergence"
Sequence of sets, non-increasing and limits of      III.4.3 126
Sequence, Cauchy      I.6.5 19
Sequence, Cauchy, generalized      I.7.4 28
Sequence, Cauchy, weak      II.3.25 67
Sequence, convergent      I.6.5 19
Sequence, factor      366
Sequence, generalized      I.7.1 26
Sequence, generalized, generated by an ultrafilter      280
Sequence, spaces of, definitions      IV.2.4—IV.2.11 239—240 IV.2.28
Sequence, spaces of, properties      IV.15
Sequential compactness, definition      I.6.10 21
Sequential compactness, relations with other compactness in metric spaces      I.6.13 21 I.6.15
Sequential compactness, weak, definition      II.3.25 67
Sequential compactness, weak, in reflexive spaces      II.3.28 68
Sequential compactness, weak, in special spaces      IV.15
Series      see also "Convergence"
Series, lacunary      IV.14.63 366
Series, orthogonal      IV.14
Series, summability of      II.4.31—II.4.54 74—78
Set function, $\sigma$-finite      III.5.7 136
Set function, additive      III.1.2 96
Set function, bounded variation of      III.1.4 97
Set function, continuity of      III.4.12 131 III.10
Set function, convergence of      III.7.2—III.7.4 158—160 IV.9 IV.15
Set function, countable additive      III.4.1 126
Set function, countable additive, study of      III.4
Set function, decomposition of      III.1.8 98 III.4.7—III.4.14 233
Set function, definition      III.1.1 95
Set function, differentiation of      III.12
Set function, extensions of      III.5
Set function, extensions of, non-uniqueness of      III.9.12 169
Set function, extensions of, to a $\sigma$-field      III.5
Set function, extensions of, to arbitrary sets      III.1.9—III.1.10 99—100
Set function, measure      III.4.3 126
Set function, positive      III.1.1 95
Set function, regular, definition      III.5.11 137
Set function, regular, properties      III.5.12—III.5.14 137—138 III.9.19—III.9.22 IV.13.75 IV.6.1—IV.6.3
Set function, relativization or restrictions of      III.8
Set function, singular      III.4.12 131
Set function, spaces of, as conjugate spaces      IV.5.1 258 IV.5.3 IV.6.2—IV.6.3 IV.8.16
Set function, spaces of, definitions      160—162 IV.2.15—IV.2.17 IV.6.1
Set function, spaces of, remarks on      389—390
Set function, spaces of, study of      III.7 IV.9—IV.10 IV.15
Set function, variation of      III.1.4 97
Set(s) in $\Sigma(\mu)$      III.7.1 158
Set(s), $\lambda$-set      III.5.1 133
Set(s), $\sigma$-field of      III.4.2 126
Set(s), Borel      III.5.10 137
Set(s), convergence of      126—127 III.9.48
Set(s), field of      III.1.3 96
Set(s), Lebesgue      III.12.9 218
Set(s), open      see "Open"
Shapiro, J.M.      406
Shiffman, M.      88
Shohat, J.A.      1274 1276
Sikorski, R.      610
Silberstein, J.P.O.      610
Silov, G.      384 385 883 884 1161
Silverman, L.L.      75
Simple function(s), definition      III.2.9 105
Simple function(s), density in $L_p$, $1 \le p < \infty$ of      III.3.8 125 III.8.3 III.9.46
Simple Jordan curve      225
Sin, D.      1588
Singer, I.M.      935
Singular element in a B-algebra      IX.1.2 861
Singular element in a ring      40
Singular element in a ring, non-singular operator      45
Singular set function, definition      III.4.12 131
Singular set function, derivatives of      III.12.6 214
Singular set function, Lebesgue decomposition theorem      III.4.14 132
Singularity of an analytic function      229
Sirohov, M.F.      395
Sirvint, G.      383 386 539—540 541 543
Skorohod, A.      94
Smiley, M.F.      394 395
Smith, K.T.      610 927 930 1120
Smithies, F.      543 610 1082 1083 1162
Smulian and Eberlein theorem on weak compactness      V.6.1 430
Smulian and Krein      see "Krein — Smulian theorem"
Smulian, criterion for $\Gamma$-compactness      464
Smulian, criterion for weak compactness      V.6.2 433
Smulian, V.L.      392 395 429 430 433 434 461 463—464 465—466 472—473 612
Snol, E.      1562 1563 1587 1591 1596 1600 1601 1610
Sobczyk, A.      86 393—394 553—554
Sobolev, S.L.      1680 1686
Solomyak, M.Z.      612
Soukhomlinoff, G.A.      86
sp(B)      50
Space      Chap. IV
Space, B- and F-, elementary properties of      Chap. II
Space, B- and F-, list of special spaces      IV.2
Space, B- and F-, study of      Chap. IV
Space, Banach      see "B-space"
Space, Cech compactification of      IV.6.27 279
Space, compact      I.5.5 17
Space, complete      I.6.5 19
Space, complete normed linear      see "B-space"
Space, completely regular      IV.6.21 276
Space, complex linear      38 49
Space, conjugate      II.3.7 61
Space, connected      I.4.12 12
Space, dimension of      36
Space, direct sum of      38
Space, extremally disconnected      398
Space, F-space      II.1.10 51
Space, factor      38
Space, fixed point property of      V.10.1 453
Space, Hausdorff      I.5.1 15
Space, linear topological      II.1.1 49
Space, locally compact      I.5.5 17
Space, locally convex topological linear      V.2.9 417
Space, measure      III.4.3 126
Space, metric      I.6.1 18
Space, normal      I.5.1 15
Space, normal structure of      V.11.14 459
Space, normed or normed linear      II.3.1 59
Space, product      I.8.1 32
Space, real linear      38 49
Space, reflexive      II.3.22 66
Space, regular      I.5.1 15
Space, separable      I.6.11 21
Space, subspace      36
Space, subspace spanned      36
Space, topological      I.4.1 10
Space, total, of functionals      V.3.1 418
Space, totally disconnected      41
Span in a linear space      36 II.1.4
Sparre Andersen, E.      235
Spectral asymptotics      XIII.10.G 1614
Spectral measure      X.1 888
Spectral measure, countably additive      X.1 889
Spectral measure, self adjoint      X.1 892
Spectral multiplicity theory, definition      X.5 913
Spectral radius of an element in a B-algebra      IX.1.2 861
Spectral radius, definition      VII.3.5 567
Spectral radius, properties      VII.3.4 567 VII.5.11—VII.5.13
Spectral representation, definition      X.5.1 909 XII.3.4 see
Spectral set of a bounded measurable function      XI.4.10 988
Spectral set of von Neumann      X.9 933
Spectral set, definition      VII.3.17 572
Spectral set, properties      VII.3.19—VII.3.21 574—575
Spectral synthesis, problem of      XI.4 987
Spectral theorem for a B*-algebra      X.2.1 895
Spectral theorem for a formally self adjoint differential operator      XIII.5.1 1333
Spectral theorem for a normal operator      X.2.4 897
Spectral theorem for a self adjoint differential operator with compact resolvent      XIII.4.2 1331
Spectral theorem for an unbounded operator      XII.2 1191
Spectral theory for compact operators      VII.4
Spectral theory in a finite dimensional space      VII.1
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте