Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)

Авторы: Dunford N., Schwartz J.T., Bade W.G.

Аннотация:

Because oC the large amount of material presented, we have been prevented from including all the topics originally announced for Part II of Linear Operators. The present volume includes all of the material of our earlier announcement associated with the classical spectral theorem for self adjoint operators in Hilbert space. While there are some isolated discussions of nousel fad joint operators, such as that giving the completeness of the generalized eigenfunctions of Hilbert-Schmidt operators in Section ХТ.в, the general theory of spectral operators and the discussion of nonselfadjoint differential boundary value problems have been postponed for inclusion in the forthcoming Part III of this treatise.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 1084

Добавлена в каталог: 27.02.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Morse, A.P.      87 235 393
Moser, J.      612
Moses, H.E.      1622
Moskovitz, D.      466
Muentz, C.H.      384
Multiplicative linear functional      IV.6.23 277 see
Multiplicity of eigenvalues      X.4 907
Munroe, M.E.      93 232 235
Murray, F.J.      554 884 886 1269
Myers, S.B.      382 397
Nachbin, L.      93 395 397 398 554
Nagata, J.      385
Nagumo, M.      79 84 394 608 609 726 883
Naimark, M.A.      876 883 884 886 932 1149 1160 1260 1261 1270 1274 1587 1588 1589 1590 1591 1593 1596 1597 1607 1608 1609 1610 1611
Nakamura, M.      233 391 395 539
Nakano, H.      80 395 471 927 928 929 1269 1273 1274
Nakayama, T.      927
Nathan, D.S.      726
Natural domain of existence of an analytic function      230
Natural embedding of a B-space      II.3.18 66
Natural homomorphism onto factor space      38 39
NBV(I)      241
Neighborhood, $\varepsilon$-, fundamental family of      I.4.6 10
Neighborhood, $\varepsilon$-, in a metric space      I.6.1 18
Neighborhood, $\varepsilon$-, of a point or set      I.4.1 10
Nemyckii, V.      1587
Neumann, C.      608 1348 1349
Neumark, M.      396
Newburgh, J.D.      612
Newton, R.G.      1626
Nicolescu, M.      388
Niemytsky, V.      470
Nikodym      see also "Radon — Nykodym theorem"
Nikodym, boundedness theorem      IV.9.8 309
Nikodym, O.M.      93 160 176 181—182 234—235 309 387 390 392
Nikol'skii, V.N.      94 611
Nikovic, I.A.      1163
Nilpotent element      40
Nilpotent, topological nilpotent in B-algebra      IX.2.5 869
Noerlund, N.E.      75
Non-singular linear transformation      45
Norm in a B-space      II.3.1 59
Norm in a conjugate space      II.3.5 60
Norm in an F-space      II.1.10 51
Norm in Hilbert space      IV.2.26 242
Norm in special spaces      IV.2
Norm of an operator      II.3.5 60
Norm, differentiability of      471—473 474
Norm, existence of      91
Norm, inequalities on $L_p$-norms      VI.11.30—VI.11.37 535—536
Norm, topology      II.3.1 59
Normal operator in a finite dimensional space      VII.2.14 563
Normal operator in Hilbert space      X.1 887
Normal operator, real and imaginary parts of      X.4 906
Normal structure, definition      V.11.14 459
Normal structure, properties      V.11.15—V.11.18 459
Normal subgroup      35
Normal topological space, compact Hausdorff space      I.5.9 18
Normal topological space, definition      I.5.1 15
Normal topological space, metric space      I.6.3 19
Normal topological space, properties      I.5.2—I.5.4 15—17
Normal topological space, regular space with countable base      24
Normed (normed linear space)      see also "B-space"
Normed (normed linear space), definition      II.3.1 59
Normed (normed linear space), study of      II.3
Nowhere dense      I.6.11 21
Null function      see also "Null set"
Null function, criterion for      III.6.8 147
Null function, definition      III.2.3 103
Null set      see also "Null function"
Null set, additional properties of      III.9.2 169 III.9.8 III.9.16
Null set, criterion for      III.6.7 147
Null set, definition      III.1.11 100
O'Neill, B.      474
O, o      27
Ogasawara, T.      395 927
Ohira, K.      394
Ono, T.      88 400 884
Open set, criterion for      I.4.2 10
Open set, definition      I.4.1 10
Operational calculus      X.1 890
Operational calculus for functions of an infinitesimal generator      VIII.2.6 645
Operational calculus for unbounded closed operators      VII.9.5 602
Operational calculus in finite dimensional space      VII.1.5 558
Operational calculus in general complex B-space      VII.3.10 568
Operational calculus, remarks on      607—609
Operator in a finite dimensional space      44
Operator topologies      VI.1
Operator topologies, bounded strong      VI.9.9 512
Operator topologies, bounded weak      VI.9.7—VI.9.10 512
Operator topologies, continuous linear functionals in      VI.1.4 477
Operator topologies, properties      VI.9.1—VI.9.12 511—513
Operator topologies, remarks on      538
Operator topologies, strong      VI.1.2 475
Operator topologies, strongest      538
Operator topologies, uniform      VI.1.1 475
Operator topologies, weak      VI.1.3 476
Operator, adjoint of      VI.2
Operator, bound of      II.3.5 60
Operator, bounded      XII.1 1185
Operator, closed      II.2.3 57 XII.1
Operator, compact, definition      VI.5.1 485
Operator, compact, study of      VI.5 VII.4
Operator, continuity of, discussion of      82—83
Operator, continuity of, in B-spaces      II.3.4 59
Operator, continuity of, in F-spaces      II.1.14—II.1.16 54
Operator, definition      36
Operator, equality of      XII.1 1185
Operator, extensions of      VI.2.5 478 554 XII.1
Operator, finite below $\lambda$      XIII.7.25 1455
Operator, functions of      see "Calculus"
Operator, graph of      II.2.3 57 XII.1
Operator, hermitian      IV.13.72 350 561
Operator, ideals of      552—553 611
Operator, identity      37
Operator, inverse of      XII.1.2 1187
Operator, limits of, in B-spaces      II.3.6 60
Operator, limits of, in F-spaces      II.1.17—II.1.18 54—55
Operator, matrix of      44
Operator, non-singular      45
Operator, norm of      II.3.5 60
Operator, normal      VII.2.14 563 IX.3.14
Operator, perturbation of      VII.6
Operator, polynomials in      VII.1.1 556
Operator, product of      37 XII.1.1
Operator, projection      37 VI.3.1
Operator, projection, study of      VI.3
Operator, quasi-nilpotent      VII.5.12 581
Operator, range of      VI.2.8 479
Operator, range of, with closed range      VI.6
Operator, representation of, in $L_1$      VI.8
Operator, representation of, in C      VI.7
Operator, representation of, in other spaces      542—552
Operator, resolvent      VII.3.1 566
Operator, resolvent, study of      VII.3
Operator, self adjoint      IX.3.14 879 XII.1.7
Operator, spectral radius of      VII.3.5 567
Operator, spectrum of      VII.3.1 566
Operator, sum of      37 XII.1.1
Operator, symmetric      X.4.1 906 XII.1.7
Operator, unbounded      VII.9 Chap.
Operator, unbounded, adjoint of      XII.1.4 1188
Operator, unbounded, spectrum and resolvent set of      XII.1 1187
Operator, weakly compact, definition      VI.4.1 482
Operator, weakly compact, study of      VI.4
Operator, zero      37
Order of a pole      230
Order of a pole of an operator      VII.3.15 57
Order of a zero      230
Ordered representation, definition      X.5.9 916 XII.3.15
Ordered representation, equivalence of      X.5.9 916 XII.3.15
Ordered representation, measure of      X.5.9 916 XII.3.15
Ordered representation, multiplicity of      X.5.9 916 XII.3.15
Ordered representation, multiplicity sets of      X.5.9 916 XII.3.15
Ordered set, definition      I.2.2 4
Ordered set, directed set      I.7.1 26
Ordered set, partially      I.2.1 4
Ordered set, study of      I.2
Ordered set, totally      I.2.2 4
Ordered set, well      I.2.8 7
Orientation of a closed curve      225
Origin of a linear space      II.3.1 59
Orihara, M.      395
Orlicz, W.      80 81—82 83 93 94 235 387 388 391—392 400 543
Orthocomplement of a set in Hilbert space, definition      IV.4.3 249
Orthocomplement of a set in Hilbert space, properties      IV.4.4 249 IV.4.18
Orthogonal complement of a set in a normed space      II.4.17 72
Orthogonal complement of a set in a normed space, remarks on      93
Orthogonal elements and manifolds in Hilbert space      IV.4.3 249
Orthogonal projections in Hilbert spaces      IV.4.8 250
Orthogonal series, exercises on      VI.11.43—VI.11.47 537
Orthogonal series, study of      IV.14
Orthonormal basis in Hilbert space      IV.4.11 252
Orthonormal basis in Hilbert space, cardinality of      IV.4.14 253
Orthonormal basis in Hilbert space, criteria for      IV.4.13 253
Orthonormal basis in Hilbert space, existence of      IV.4.12 252
Orthonormal set in Hilbert space, closed set      IV.14.1 357
Orthonormal set in Hilbert space, complete set      IV.4.8 250
Orthonormal set in Hilbert space, definition      IV.4.8 250
Orthonormal set in Hilbert space, properties      IV.4.9—IV.4.16 251—254
Outer measure      III.5.3 133
Owchar, M.      406
Oxtoby, J.C.      722 728 729 1152
Pais, A.      1568
Paley, R.E.A.C.      405 406 541 1177 1181 1264
Parallelogram, identity      249
Parker, W.V.      1080
Partial isometry, definition      XII.7.4 1248
Partially ordered set, bounds in      I.2.3 4
Partially ordered set, completely ordered      I.3.9 8
Partially ordered set, definition      I.2.1 4
Partially ordered set, directed set      I.7.1 26
Partially ordered set, fundamental theorem on      I.2.5 5
Partially ordered set, study of      I.2
Partially ordered set, totally ordered      I.2.2 4
Partially ordered set, well ordered      I.2.8 7
Peano, G.      1588
Peck, J.E.L.      471 474
Periodic function (almost periodic function), definition      IV.2.25 242
Periodic function (almost periodic function), multiply      IV.14.68 367
Periodic function (almost periodic function), study of      IV.7
Perron, O.      1078
Perturbation of bounded linear operators, remarks on      611—612
Perturbation of bounded linear operators, study of      VII.6 VII.8.1—VII.8.2 VII.8.4—VII.8.5
Perturbation of infinitesimal generator of a semi-group      630—639
Peter — Weyl theorem      XI.1.4 940
Peter, F.      940 1145
Pettis, B.J.      81 83—84 88 232 235 318 387 391 473 540—541 543
Phillips' perturbation theorem      VIII.1.19 631
Phillips' perturbation theorem, Hille — Yosida — Phillips' theorem      VIII.1.13 624
Phillips, R.S.      233 234—235 373 388 390 393 395 462 463 466 541 543 553—554 612 624 726—728 729 883 1274
Phragmen, E.      1043 1115
Pick, G.      1080
Picone, M.      1583 1592
Pierce, R.      395
Pincherle, S.      80
Pinsker, A.G.      395
Pitt, H.R.      729
Plancherel theorem      XI.3.9 963 XI.3.20
Plancherel, M.      963
Plessner, A.I.      929 1269 1274
Poincare, H.      607
Pointwise ergodic theorems, k-parameter continuous case in $L_1$      VIII.7.17 708
Pointwise ergodic theorems, k-parameter continuous case in $L_p$, $1 < p < \infty$      VIII.7.10 694
Pointwise ergodic theorems, k-parameter discrete case      VIII.6.9 679
Pointwise ergodic theorems, one-parameter continuous case      VIII.7.5 690
Pointwise ergodic theorems, one-parameter discrete case      VIII.6.6 675
Pointwise ergodic theorems, remarks on      729—730
Pointwise Fubini — Jessen theorem      III.11.27 209
Poisson summability      IV.14.47 363
Poisson, S.D.      363
Polar decomposition of an operator      X.9 935
Pole of an analytic function      229
Pole of an operator, criteria for      VII.3.18 573 VII.3.20
Pole of an operator, definition      VII.3.15 571
Pollard, H.      728 1161 1265
Polynomial in an operator in a finite dimensional space      VII.1.1 556
Polynomial in an operator in a general space      VII.3.10 568 VII.5.17
Polynomial in an operator, characteristic      VII.2.1 561 VII.5.17 VII.10.8
Polynomial of an unbounded closed operator      VII.9.6—VII.9.10 602—604
Pontrjagin, L.      47 79 1145 1157 1158 1160
Poole, E.G.C.      1433 1503
Positive definite operator, definition      X.4.1 906
POVZNER, A.      1587 1626
Preparation theorem of Weierstrass      232
Price, G.B.      232—233
Principal value integral, definition      XI.7.1 1050
Product of B-spaces      89—90
Product of operators      37
Product, Cartesian, of measure spaces      III.11 235
Product, cartesian, of sets      I.3.11 9
Product, Cartesian, of spaces      I.8
Product, Cartesian, topology      I.8.1 32
Product, Cartesian, Tychonoff theorem      I.8.5 32
Product, intersection of sets      2
Product, scalar, in a Hilbert space      IV.2.26 242
Projection and complements      553
Projection and extensions      554
Projection mapping in Cartesian products, continuity and openness      I.8.3 32
Projection mapping in Cartesian products, definition      I.3.14 9
Projection, definition      37 VI.3.1
Projection, exercises on      VI.9.18—VI.9.25 513—514 VI.9.27—VI.9.29
Projection, natural order for      VI.3.4 481
Projection, orthogonal or perpendicular      IV.4.8 250 482
Projection, study of      VI.3
Proper value, definition      606
Ptak, V.      84 466
Putnam, C.R.      934 935 1563 1587 1592 1599 1600 1610
Quasi-equicontinuity and weak compactness      IV.6.14 269 IV.6.29
Quasi-equicontinuity for bounded functions      IV.6.28 280
Quasi-equicontinuity for continuous functions      IV.6.13 269
Quasi-nilpotent operator, definition      VII.5.12 581
Quasi-uniform convergence as a criterion for continuous limit      IV.6.11 268
Quasi-uniform convergence, definition      IV.6.10 268
Quasi-uniform convergence, properties      IV.6.12 269 IV.6.30—IV.6.31
Quigley, F.D.      385
Quotient of B-algebras      IX.1 866
Quotient, group      35 see
Quotient, space      38
R(T)      567
Rabinovic, Yu.L.      612
Radicals in B-algebras      IX.2.5 869
Radius, spectral      VII.3.5 567
Radon measure, definition      142
Radon — Nikodym theorem for bounded additive set functions      IV.9.14 315
Radon — Nikodym theorem, counterexample      III.13.2 222
Radon — Nikodym theorem, general case      III.10.7 181
Radon — Nikodym theorem, positive case      III.10.2 176
Radon — Nikodym theorem, remarks on      234
Radon, J.      142 176 181—182 234 380 388 392 539 543
Raikov, D.A.      1152 1160 1274
Ramaswami, V.      884
Range of an operator      VI.2.8 479
Range of an operator, closed, criterion for      VII.4.1 577
Range of an operator, closed, study of      VI.6 VI.9.15 VI.9.17
Range of an operator, remarks on      539
Rapoport, I.M.      1587
Rasevskii, P.K.      1149
Rayleigh equation      X.4 907
Rayleigh, Lord      611 907 928
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте