Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)

Авторы: Dunford N., Schwartz J.T., Bade W.G.

Аннотация:

Because oC the large amount of material presented, we have been prevented from including all the topics originally announced for Part II of Linear Operators. The present volume includes all of the material of our earlier announcement associated with the classical spectral theorem for self adjoint operators in Hilbert space. While there are some isolated discussions of nousel fad joint operators, such as that giving the completeness of the generalized eigenfunctions of Hilbert-Schmidt operators in Section ХТ.в, the general theory of spectral operators and the discussion of nonselfadjoint differential boundary value problems have been postponed for inclusion in the forthcoming Part III of this treatise.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 1084

Добавлена в каталог: 27.02.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Base for a topology, definition      I.4.6 10
Base for a topology, theorems concerning countable bases      I.4.14 12 I.6.12 I.6.19
Basic separation theorem concerning convex sets      V.1.12 412
Bellman, R.      1550
Bendixon, I.      1080
Bennett, A.A.      85
Berezanskii, Yu.M.      1587 1626
Berkowitz, J.      1543 1580 1591 1592 1594 1595 1599 1604
Bernoulli, D.      1581 1582
Bernstein theorem, concerning cardinal numbers      I.14.2 46
Bernstein, F.      46
Berri, R.      395
Besicovitch, A.S.      386
Bessel equation      XIII.8 1535
Bessel, F.W.      977 1348 1349 1535
Beurling, A.      361 930 978 1160 1161 1162
Bieberbach, L.      48
Bilateral Laplace and Laplace — Stieltjes transforms, definitions      VIII.2.1 642
Bilinear functional      II.4.4 70
Biorthogonal system in a B-space      II.4.11 71
Birkhoff, G.      48 90 93 232 235 393—394 395 729
Birkhoff, G.D.      470 658—659 729 1497 1583 1586 1589 1592
Birnbaum, Z.W.      400
Blumenthal, L.M.      393
Boas, R.P., Jr.      94 473 1266
Bocher, M.      1583 1588 1589
Bochner moment problem      XII.8.3 1254
Bochner, S.      232—233 235 283 315 386 390 395 540 543 552 883 1160 1254 1273 1274
Bodiou, G.      1264
Bogoliouboff, N.      730
Bohnenblust, H.F.      86 94 393 394 395—396 554
Bohr, H.      281 386—387 399 949 1149
Bohr, H., theorem concerning almost periodic functions      XI.2.4 949
Boltzmann, L.      657
Bonnesen, T.      471
Bonsall, F.F.      88
Boolean algebra      see also "Boolean ring"
Boolean algebra, definition      43
Boolean algebra, properties      44
Boolean algebra, representation of      44
Boolean ring, definition      40
Boolean ring, representation of      I.12.1 41
Borel field of sets, definition      III.5.10 137
Borel function      X.1 891
Borel measurable function      X.1 891
Borel measure (or Borel — Lebesgue measure), construction of      139 III.13.8
Borel — Stieltjes measure      142
Borel, E.      132 139 142 1588
Borg, G.      1561 1622
Borsuk, K.      91
Botts, T.      387 460
Bound in a partially ordered set      I.2.3 4
Bound in the (extended) real number system      3
Bound, of an operator      II.3.5 60
Boundary condition, adjoint      XII.4.27 1237
Boundary condition, definition      XII.4.25 1235 see boundary
Boundary condition, linearly independent      XII.4.25 1235
Boundary condition, symmetric      XII.4.25 1236
Boundary of a set      I.4.9 11
Boundary values for an operator      XII.4.20 1234
Boundary values, complete set of      XII.4.22 1235 see
Bounded $\mathfrak{X}$ topology, continuous linear functionals      V.5.6 428
Bounded $\mathfrak{X}$ topology, system of neighborhoods for      V.5.4 427
Bounded function space, additional properties      IV.15
Bounded function space, definition      IV.2.13 240
Bounded function space, remarks concerning      373
Bounded function space, study of      IV.5
Bounded operator, definition      II.3.5 60
Bounded set in a linear topological space      II.1.7 51
Bounded set in a linear topological space, criterion for boundedness in a B-space      II.3.3 59
Bounded set in a linear topological space, remarks on      80
Bounded sets in linear spaces      V.7.5 436 V.7.7 V.7.8
Bounded strong operator topology, definition and properties      VI.9.9 512
Bounded variation of a function, additional properties      IV.15 378
Bounded variation of a function, criterion to be      IV.13.73 350
Bounded variation of a function, definition      III.5.15 140
Bounded variation of a function, generating Borel — Stieltjes measure      142
Bounded variation of a function, integral with respect to      IV.13.63 349
Bounded variation of a function, integration by parts      III.6.22 154
Bounded variation of a function, remarks on      392—393
Bounded variation of a function, right- and left-hand limits of      III.5.16 140 III.6.21
Bounded variation of a function, set function, criteria for      III.4.4—III.4.5 127—128 see
Bounded variation of a function, set function, definition      III.1.4 97
Bounded variation of a function, study of      IV.12
Bounded weak operator topology, definition and properties      VI.9.7—VI.9.10 512
Bounded, essentially (or $\mu$-essentially), definition      III.1.11 101
Bounded, totally bounded set, definition      I.6.14 22
Boundedness of a continuous function on a compact set      I.5.10 18
Boundedness of a finite countably additive set function      III.4.4—III.4.7 127—128
Boundedness of an almost periodic function      IV.7.3 283
Boundedness, principle of uniform boundedness in B-spaces      II.3.20—II.3.21 66 80—82
Boundedness, principle of uniform boundedness in F-spaces      II.1.11 52
Bounding point of a set, criteria for      V.1.8 411 V.2.1
Bounding point of a set, definition      V.1.6 410
Bourbaki, N.      47 80 82 84 232 382 463 465 471
Bourgin, D.G.      383 462
Brace, J.W.      466
Bram, J.      932 933
Brauer, A.      1078
Brauer, R.      1149
Bray, H.E.      391
Brelot, M.      1268
Brillouin, L.      1592 1614
Brodskii, M.S.      471 1164
Brouwer fixed point theorem, proof of      467
Brouwer fixed point theorem, statement      453
Browder, F.E.      1269 1634 1635 1708 1746
Brown, A.      934 935
BS      240
Buchheim, A.      607
Buniakowsky, V.      372
Burkhardt, H.      1589
bv      239
BV(I)      241
C      239
C(S)      240
Cafiero, F.      389 392
Calderon — Zygmund convolution kernel of      XI.7.4 1053
Calderon — Zygmund convolution product of      XI.7.6 1054
Calderon — Zygmund inequality      XI.7.11 1063 XI.7.16
Calderon, A.P.      541 730 1063 1072 1077 1164 1165
Calkin, J.W.      553 1270 1273 1586 1589
Cameron, R.H.      406 407
Camp, B.H.      390
Canonical factorization of operators      XII.7
Cantor diagonal process      23
Cantor perfect set      V.2.13—V.2.14 436
Caratheodory theorem, concerning outer measures      III.5.4 134
Caratheodory, C.      48 134 232 729 1043
Cardinal numbers, Bernstein theorem      I.14.2 46
Cardinal numbers, comparability theorem      I.3.5 8
Carleman, T.      536 927 1162 1163 1268 1269 1277
Carleman’s inequality      XI.6.27 1038
Cartan, E.      607 1148
Cartan, H.      30 1152 1160 1274
Cartesian product of sets, definition      I.3.11 9
Cartesian product of sets, properties      I.3.12—I.3.14 9
Cartesian product of topological spaces      I.8 31
Category theorem of Baire      I.6.9 20
Cauchy integral formula      227
Cauchy integral formula for functions of an operator, in a finite dimensional space      VII.1.10 560
Cauchy integral formula for functions of an operator, in general space      VII.3.9 568
Cauchy integral formula for unbounded closed operators      VII.9.4 601
Cauchy integral formula, remarks on      607—609 612
Cauchy integral theorem      225
Cauchy problem      613—614 639—641
Cauchy sequence in a metric space      I.6.5 19—20
Cauchy sequence, generalized      28
Cauchy sequence, weak, criterion for in various spaces      IV.15
Cauchy sequence, weak, in a B-space      II.3.25 67—68
Cauchy, A.      372 382—383
Cayley, A.      1270 1271
Cech compactification theorem      IV.6.22 276
Cech compactification theorem of a completely regular space      279
Cech, E.      279 385 872
Cesaro summability of Fourier series      IV.14.44 363
Cesaro summability of series      II.4.37 75
Cesaro, E.      75 352 363
Chang, S.H.      610 1163
Change of variables for functions      III.13.4—III.13.5 222—223
Change of variables for measures      III.10.8 182
Character group, definition      XI.3.13 968
Character, definition      XI.1.5 944
Characteristic function      3
Characteristic polynomial, definition      VII.2.1 561 XI.6.9
Characteristic polynomial, properties      VII.2.1—VII.2.4 561—562 VII.5.17 VII.10.8
Characteristic value      606
Characterizations of $L_p$      394—396
Characterizations of Hilbert space      393—394
Characterizations of the space of continuous functions      394—397
Charzynski, Z.      91
Chevalley, C.      79
Chiang, T.P.      928
Christian, R.R.      233 382 543 927
Clarkson, J.A.      235 384 393 396 397 473
Clifford, A.H.      92
Closed curve, positive orientation of      225
Closed graph theorem      II.2.4 57
Closed graph theorem, remarks on      83—85
Closed linear manifold spanned by a set      II.1.4 50
Closed operator, definition      II.2.3 57
Closed orthonormal system, definition      IV.14.1 357
Closed orthonormal system, study of      IV.14
Closed set, definition      I.4.3 10
Closed set, properties      I.4.4—I.4.5 10
Closed sphere      II.4.1 70
Closed unit sphere      II.3.1 59
Closure of a set, criterion to be in      I.7.2 27
Closure of a set, definition      I.4.9 11
Closure of a set, properties of the closure operation      I.4.10—I.4.11 11—12
Closure of a symmetric operator, definition      XII.4.7 1226
Closure theorems      XI.4 978—1001
Closure theorems, Wiener, $L_1$      XI.4.7 986
Closure theorems, Wiener, as a Tauberian theorem      XI.5.C 1003
Closure theorems, Wiener, generalization of      XI.4.21 996
Cluster point of a set      I.7.8 29
co(A)      414
Coddington, E.A.      1433 1434 1498 1503 1587 1590 1591 1592
Cohen, I.S.      400
Cohen, L.W.      543 729
Collatz, L.      610 928
Collins, H.S.      466
Commutator of two operators, definition      X.9 934
Compact operator in $L_p$      VI.9.51—VI.9.57 517—519
Compact operator in C      VI.9.45 516
Compact operator, criteria for and properties of      VI.9.30—VI.9.35 515
Compact operator, definition      VI.5.1 485
Compact operator, elementary properties      VI.5
Compact operator, ideals of      552—553
Compact operator, remarks concerning      539 609—611
Compact operator, representation of      547—551
Compact operator, representation of, into C(S)      VI.7.1 490
Compact operator, representation of, on $L_1$      VI.8.11 507
Compact operator, representation of, on C(S)      VI.7.7 496
Compact operator, spectral theory of      VII.4 VII.5.35 VII.8.2
Compact space, conditional compactness      I.5.5 17
Compact space, criteria for compactness      I.5.6 17 I.7.9 I.7.12
Compact space, definition      I.5.5 17
Compact space, metric spaces      I.6.13 21—22 I.6.18—I.6.19
Compact space, properties      I.5.6—I.5.10 17—18
Compact space, sequential compactness, definition      I.6.10 21
Compact space, weak sequential compactness, conditions for in special B-spaces      IV.15
Compact space, weak sequential compactness, definition      II.3.25 67
Compact space, weak sequential compactness, in reflexive spaces      II.3.28 68
Complement of a set      2
Complement, and projections      553—554
Complement, orthocomplement      IV.4.3 249
Complement, orthogonal      II.4.17 72
Complemented lattice      43
Complete and $\sigma$-complete lattice      43
Complete metric space, compact      I.6.15 22
Complete metric space, definition      I.6.5 19
Complete metric space, properties      I.6.7 20 I.6.9
Complete normed linear space      see "B-space"
Complete orthonormal set in Hilbert space      IV.4.8 250
Complete partially ordered space, definition      I.3.9 8
Completely regular space, compactification of      IV.6.22 276 IX.2.16
Completely regular space, definition      IV.6.21 276 IX.2.15
Completion of a normed linear space      89
Complex numbers, extended      3
Complex vector space      38 49
Conditional compactness, definition      I.5.5 17 see
Cone, definition      V.9.9 451
Confluent hypergeometric function      XIII.8 1526
Conjugate space, definition      II.3.7 61
Conjugate space, representation for special spaces      IV.15
Conjugations in groups      35
Conjugations in Hilbert space      XII.4.17 1231
Connected set in n-space      230
Connected space      I.4.12 12
Continuity of functionals and topology      V.3.8—V.3.9 420—421 V.3.11—V.3.12
Continuity of functionals and topology in bounded $\mathfrak{X}$-topology      V.5.6 428
Continuity of functionals and topology, criteria for existence of continuous linear functionals      V.7.3 436
Continuity of functionals and topology, non-existence in $L_p$, 0<p<1      V.7.37 438
Continuous (or $\mu$-continuous set functions), criterion for      III.14.13 131
Continuous (or $\mu$-continuous set functions), definition      III.4.12 131
Continuous (or $\mu$-continuous set functions), derivative of      III.12.6 214
Continuous (or $\mu$-continuous set functions), relation with absolutely continuous functions      338
Continuous (or $\mu$-continuous set functions), relation with integrable functions      III.10
Continuous functions      see also "Absolutely continuous functions"
Continuous functions as a B-space, additional properties      IV.15
Continuous functions as a B-space, definition      IV.2.14 240
Continuous functions as a B-space, remarks concerning      373—386
Continuous functions as a B-space, study of      IV.6
Continuous functions on a compact space      I.5.8 18 I.5.10
Continuous functions, characterizations of C-space      396—397
Continuous functions, criteria and properties of      I.4.16—I.4.18 13—14 I.6.8 I.7.4
Continuous functions, criteria for the limit to be continuous      I.7.7 29 IV.6.11
Continuous functions, definition      I.4.15 13
Continuous functions, density in TM and $L_p$      III.9.14 170 IV.8.19
Continuous functions, existence of non-differentiable continuous functions      I.9.6 33
Continuous functions, existence on a normal space      I.5.2 15
Continuous functions, extension of      I.5.3—I.5.4 15—17 I.6.17
Continuous functions, representation as a C-space, almost periodic functions      IV.7.6 285
Continuous functions, representation as a C-space, bounded functions      IV.6.18—IV.6.22 274—277
Continuous functions, special C-spaces      397—398
Continuous functions, uniform continuity      I.6.16—I.6.18 23—24
Continuous functions, uniform continuity, of almost periodic functions      IV.7.4 283
Convergence of filters      I.7.10 30
Convergence of functions      IV.15
Convergence of functions in $L_p$, criteria for      III.3.6—III.3.7 122—124 III.6.15 III.9.5 IV.8.12—IV.8.14 388
Convergence of functions in measure (or in $\mu$-measure), counter examples concerning      III.9.4 169 III.9.33
Convergence of functions in measure (or in $\mu$-measure), definition      III.2.6 104
Convergence of functions in measure (or in $\mu$-measure), properties      III.2.7—III.2.8 104—105 III.6.2—III.6.3 III.6.13
Convergence of functions, $\mu$-uniform, criteria for      III.6.2—III.6.3 145 III.6.12
Convergence of functions, $\mu$-uniform, definition      III.6.1 145
Convergence of functions, almost everywhere, criteria for      III.6.12—III.6.13 149—150
Convergence of functions, almost everywhere, definition      III.1.11 100
Convergence of functions, almost everywhere, properties      III.6.14—III.6.17 150—151
Convergence of functions, quasi-uniform, definition      IV.6.10 268
Convergence of functions, quasi-uniform, properties      IV.6.11—IV.6.12 268—269 IV.6.30—IV.6.31
Convergence of functions, uniform, definition      I.7.1 26
Convergence of functions, uniform, properties      I.7.6—I.7.7 28—29
Convergence of sequences in a metric space      I.6.5 19
Convergence of sequences in special spaces      IV.15
Convergence of sequences, generalized      I.7.1—I.7.7 26—29
Convergence of sequences, weak convergence in a B-space      II.3.25 67
Convergence of series in a B-space, absolute      93
Convergence of series in a B-space, unconditional      92
Convergence of sets, definition      126—127
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте