Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)

Авторы: Dunford N., Schwartz J.T., Bade W.G.

Аннотация:

Because oC the large amount of material presented, we have been prevented from including all the topics originally announced for Part II of Linear Operators. The present volume includes all of the material of our earlier announcement associated with the classical spectral theorem for self adjoint operators in Hilbert space. While there are some isolated discussions of nousel fad joint operators, such as that giving the completeness of the generalized eigenfunctions of Hilbert-Schmidt operators in Section ХТ.в, the general theory of spectral operators and the discussion of nonselfadjoint differential boundary value problems have been postponed for inclusion in the forthcoming Part III of this treatise.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 1084

Добавлена в каталог: 27.02.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Jackson, D.      1589
Jacobi, C.G.J.      1275 1512
Jacobson, N.      48 935
James, R.C.      88 93 94 393—394 472—473
Jamison, S.L.      612
Jerison, M.      397 473
Jessen      see "Fubini — Jessen theorems"
Jessen, B.      207 209 235 530
Jordan canonical form for a matrix      VII.2.17 563
Jordan curve      225
Jordan decomposition of a measure      III.4.7 128 III.4.11
Jordan decomposition of an additive real set function      III.1.8 98
Jordan, C.      98 392
Jordan, P.      393—394
Jost, R.      1568 1626
Julia, G.      934
Kac, M.      406 407
Kaczmarz, S.      94
Kadison, R.V.      385 395 397
Kahane, J.P.      1161
Kakutani      see "Markov — Kakutani theorem"
Kakutani, S.      86 90 235 380 384 386 393—394 395 396 456—457 460 462 463 471 473 539 541 554 715 728—730 1152
Kamke, E.      47
Kantorovitch, L.V.      233 373 386 388 395 540 543
Kaplansky theorem on $l_1$ as a B-algebra      IX.4.20 882
Kaplansky, I.      384—385 396 882 884 886 934 935 1161
Karaseva, T.M.      1587
Karlin, S.      93 94
Kato, T.      612 935
Katznelson, Y.      1161
Kay, I.      1622 1626
Kaz, I.      1590
Keldys, M.V.      611 1163
Kelley, J.L.      47—48 382 385 397 398 466 554 884 927 929
Kellogg, O.D.      470
Kemble, E.C.      1592
Kernel of a homomorphism      39 IV.13C IV.14
Kernel, convergence of      III.12.10—III.12.12 219—222 IV.13C IV.14
Kerner, M.      92
Khintchine, A.      729
Kinoshita, A.      471
Klee, V.L.      87 90 460—461 466
Kleinecke, D.C.      553 610 612
Kneser, A.      1463 1583 1590 1592
Knopp, K.      48 536
Kober, H.A.      554
Kodaira theorem      XIII.2.26 1302
Kodaira, K.      927 1152 1301 1302 1351 1355 1364 1586 1587 1589 1590
Koethe, G.      84 399 465
Kolmogoroff, A.      91 385 388
Komatuzaki      554
Koopman, B.O.      728 927 929
Koosis, P.      1161
Kostyucenko, A.      94 1587
Kozlov, V.      94
Krackovskii, S.N.      473 611
Kramer, H.P.      612
Kramer, V.A.      612
Kramers, H.A.      1592 1614
Krasnosel'skii, M.A.      400 611 1270 1273 1587 1591
Krein — Milman theorem on extremal points      V.8.4 440
Krein — Smulian theorem on $\mathfrak{X}$ closed convex sets in $\mathfrak{X}^{*}$      V.5.7 429
Krein — Smulian theorem on convex closure of a weakly compact set      V.6.4 434
Krein, M.      94 387 395 396 397 429 434 440 461 463 465—466 611 612
Krein, M.G.      1160 1163 1270 1273 1587 1590 1591 1622 1626
Krein, S.      395 396 397
Kryloff, N.      730
Kuerschak, J.      79
Kuller, R.G.      395
Kunisawa, K.      391
Kuratowski, C.      83
Lacunary series, definition      IV.14.63 366
Lagrange, J.L.      372 1582 1588
Laguerre, E.N.      607
Lalesco, T.      1081 1162
Lamson, K.W.      85
Landau, E.      80 1591
Langer, R.E.      1592
Laplace and Laplace — Stieltjes transform      VIII.2.1 642
LaSalle, J.P.      91 399
Latshaw, V.V.      1589
Lattice, definitions      43
Laurent expansion      229
Lax, P.D.      88 1635 1748
Leader, S.      233
Least upper bound in a partially ordered set      I.2.3 4
Least upper bound in the real numbers      3
Least upper bound, essential      III.1.11 100 899
Lebesgue — Stieltjes measure on an interval      143
Lebesgue, decomposition theorem      III.4.14 132 233
Lebesgue, dominated convergence theorem      III.3.7 124 III.6.16 IV.10.10
Lebesgue, extension theorem      III.5.17—III.5.18 142—143
Lebesgue, H.      80 124 132 143 151 218 232 234 390
Lebesgue, measure, in n-dimensional space      III.11.6 188
Lebesgue, measure, on an interval      143
Lebesgue, set      III.12.9 218
Lebesgue, spaces      see "$L_p$-spaces"
Lefschetz, S.      47 467
Legendre, A.M.      1512
Leja, F.      79
Lengyel, B.A.      927 928 929
Leray, J.      84 470 609
Levi, B.      373
Levinson, N.      1266 1433 1434 1498 1503 1587 1590 1591 1592 1622
Levitan, B.M.      1587 1588 1590 1616 1622 1623 1624 1625 1626 1628
Levy, P.      407 881
Lezanski, T.      610
Lidskii, V.B.      1587 1591
Lie, S.      79
Lifsic, I.M.      612
lim inf A      4
lim sup A      4
LIMIT      see also "Convergence"
Limit, Banach      II.4.22—II.4.23 73
Limit, inferior (or superior), of a sequence of sets      III.4.3 126
Limit, inferior (or superior), of a set or sequence of real numbers      4
Limit, point of a set      I.4.1 10
Limit, weak, definition      II.3.25 67
Limit, weak, in special spaces      IV.15
Limit, weak, properties      II.3.26—II.3.27 68
Lindeloef theorem      I.4.14 12
Lindeloef, E.      12 1043 1115
Lindgren, B.W.      406
Line integral, definition      225
Linear dimension      91
Linear functional      38 see
Linear manifold      36 see
Linear operator      36 see
Linear space      I.11
Linear space, normed      II.3.1 59 see
Linear space, topological      II.1.1 49
Linear transformation      36 see
Linearly independent      36
Lions, J.L.      1724 1726
Liouville theorem      231
Liouville, J.      1291 1581 1582 1583
Littlewood, J.E.      78 531—532 541 718 1004 1006 1007 1076 1147 1177 1181 1183 1184 1591
Livingston, A.E.      399
Livsic, M.S.      611 1164 1587
Localization of series, definition      359
Locally compact space, definition      I.5.5 17
Locally convex space, definition      V.2.9 417
Locally convex space, local convexity, of $\Gamma$ and weak topologies      V.3.3 419
Locally convex space, local convexity, of $\mathfrak{X}^{*}$ in the bounded $\mathfrak{X}$ topology      V.5.5 428
Locally convex space, separation of convex sets in      V.2.10—V.2.13 417—418
Loewig, H.      372 373
Loewner, K.      407
Loomis, L.H.      79 382 386 883 927 1145 1149 1152 1160 1161 1274
Lorch, E.R.      88 94 393—394 407 554 609 728 884 927
Lorentz, G.G.      84 400 543
Lower bound for an operator      XII.5.1 1240
lub A      3
Lumer, G.      931 933
M(S) or $M(S,\Sigma,\mu,\mathfrak{X})$      106
Maak, W.      386
MacDuffee, C.C.      606 607
Mackey, G.W.      393—394 554 1160 1161
MacLane, S.      48
Macphail, M.S.      93
Maddaus, I.      93 543 552
Maeda, F.      395 1274
Malliavin, P.      1161
Mandelbrojt, S.      1161
Manifold in a linear space      36 see
Manifold, closed linear, spanned by a set      II.1.4 50
Manifold, orthogonal, in Hilbert space      IV.4.3 249
Mapping      see also "Function"
Mapping, interior principle      II.2.1 55
Mapping, interior principle, remarks on      83—85
Marcenko, V.A.      1587 1590
Marcinkiewicz, J.      720 1166 1180 1182
Marinescu, G.      609
Markouchevitch, A.      94
Markov process, application of uniform ergodic theory to      VIII.8
Markov process, definition      659
Markov — Kakutani theorem on fixed points of affine maps      V.10.6 456
Markov, A.      380 456 471
Martin, R.S.      79 610 883
Martin, W.T.      406
Marumaya, G.      406
Masani, P.R.      233
Maslow, A.      233
Matrix      44
Matrix of a projection      VI.9.27 514
Matrix, characteristic polynomial of      VII.2.1—VII.2.4 561—562
Matrix, exercises on      VII.2
Matrix, hermitian      561
Matrix, Jordan canonical form for      VII.2.17 563
Matrix, normal      VII.2.14 563
Matrix, study of      VII.1
Matrix, trace of      VI.9.28 515
Mautner, F.I.      1269 1634 1708
Maximal element in a partially ordered space      I.2.4 4
Maximal element, Hausdorff maximality theorem      I.2.6 6
Maximal element, relative to a normal operator      X.5.6 913
Maximal ergodic lemma, discrete case      VIII.6.7 676
Maximal ergodic lemma, k-parameter case      VIII.7.11 697
Maximal ergodic lemma, one-parameter continuous case      VIII.7.6 690
Maximal ergodic lemma, remarks on      729
Maximal ideal, definition and existence in a ring      39
Maximum modulus theorem      230—231
Maxwell, J.C.      1749
Mazur theorem on the convex hull of a compact set      V.2.6 416
Mazur, S.      80 81—82 83 91—92 392 400 416 460 461—462 466 472 883
McShane, E.J.      84 232—233 382 387 927
Mean ergodic theorem      728—729
Mean ergodic theorem, continuous case in B-space      VIII.7.1—VIII.7.3 687—689
Mean ergodic theorem, continuous case in B-space, in $L_1$      VIII.7.4 689
Mean ergodic theorem, continuous case in B-space, in $L_p$      VIII.7.10 694
Mean ergodic theorem, discrete case in B-space      VIII.5.1—VIII.5.4 661—662
Mean ergodic theorem, discrete case in B-space, in $L_1$      VIII.5.5 662
Mean ergodic theorem, discrete case in B-space, in $L_p$      VIII.5.9 667
Mean Fubini — Jessen theorem      III.11.24 207
Measurable function, conditions for (total) measurability      III.2.21 116 III.6.9—III.6.11 III.6.14 III.9.9 III.9.11 III.9.18 III.9.24 III.9.37 III.9.44 III.13.11
Measurable function, definition      III.2.10 106
Measurable function, extensions of the notion of measurability      118—119 322
Measurable function, properties      III.2.11—III.2.12 106
Measurable function, space of totally, $\Sigma$-measurable function      IV.2.12 240 891
Measurable function, space of totally, as a topological linear space      III.9.7 169 III.9.28
Measurable function, space of totally, criterion for completeness      III.6.5 146
Measurable function, space of totally, definition      III.2.10 106 IV.2.27
Measurable function, space of totally, properties      III.2.11—III.2.12 106
Measurable function, space of totally, remarks concerning      392
Measurable function, space of totally, study of TM      IV.11 IV.15
Measurable set, definition      III.4.3 126
Measure      see also "Set function"
Measure of hypersurface of unit sphere in $E^n$      XI.7 1048—1049
Measure space as a metric space      III.7.1 158 III.9.6
Measure space, $\sigma$-finite      III.5.7 136
Measure space, decomposition of      see also "Decomposition"
Measure space, definition      III.4.3 126
Measure space, finite      III.4.3 126
Measure space, Lebesgue extension of      III.5.18 143
Measure space, positive      III.4.3 126
Measure space, product, of finite number of c-finite measure spaces      188
Measure space, product, of finite number of finite measure spaces      III.11.3 186
Measure space, product, of infinite number of finite measure spaces      III.11.21 205
Measure, -preserving transformation      667
Measure, Borel or Borel — Lebesgue      139
Measure, Borel — Stieltjes      142
Measure, Borel — Stieltjes, decomposition of      see "Decomposition"
Measure, Borel — Stieltjes, determined by a function      142 144
Measure, Borel — Stieltjes, differentiation of      III.12
Measure, change of      III.10.8 182 X.1
Measure, definition      III.4.3 126
Measure, Haar      V.11.22—V.11.23 460
Measure, Hausdorff $\alpha$-      III.9.47 174
Measure, invariant      VI.9.38—VI.9.44 516
Measure, Lebesgue and Lebesgue — Stieltjes      143
Measure, Lebesgue extension of      III.5.18 143
Measure, outer      III.5.3 133
Measure, positive matrix      XIII.5.12 1349
Measure, product      III.11
Measure, Radon      142
Measure, regular vector-valued      IV.13.75 350
Measure, restriction of      166
Measure, spaces of      III.7 IV.2.15—IV.2.17 IV.9 IV.15 389—391
Measure, vector-valued, study of      IV.10 391
Medvedev, Yu.T.      392
Mercer, T.      1088
Mertens, F.      77
Metric spaces, complete      I.6.5 19
Metric spaces, definition      I.6.1 18
Metric spaces, properties      I.6
Metric(s)      I.6.1 18
Metric(s) topology in normed linear space      II.3.1 59 419
Metric(s), invariant, in a group      90—91
Metric(s), invariant, in a linear space      II.1.10 51
Metrically transitive transformation      667
Metrizability      see also "Metrization"
Metrizability and dimensionality      V.7.9 436 V.7.34—V.7.35
Metrizability and separability      V.5.1—V.5.2 426 V.6.3 V.7.15
Metrization of a measure space      III.7.1 158
Metrization of a regular space      I.6.19 24
Metrization of the set of all functions      III.2.1 102
Michael, E.      462 538
Michael, E.A.      886 931
Michal, A.D.      79 92 610 883
Mihlin, C.G.      1181
Mikusinski, J.G.      395
Miller, D.S.      392 724 729
Milman      see "Krein — Milman theorem"
Milman, D.P.      94 440 463 466 471 473 1587 1591
Milne, W.E.      1592 1614
Mimura, Y.      541 928
Minimax principle      X.4 908 XIII.9.D
Minkowski inequality      III.3.3 120
Minkowski inequality, conditions for equality      III.9.43 173
Minkowski Inequality, generalizations of      VI.11.13—VI.11.18 530—531
Minkowski, H.      120 372 471
Miranda, C.      88 470
Mirkil, H.      1161
Miyadera, I.      727
Mohr, E.      1590
Molcanov, A.M.      1563 1587 1591
Monna, A.F.      233 400
Montroll, E.W.      406
Moore theorem, concerning interchange of limits      I.7.6 28
Moore, E.H.      28 80 608
Moore, R.L.      48
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте