|
|
Авторизация |
|
|
Поиск по указателям |
|
|
|
|
|
|
|
|
|
|
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs) |
|
|
Предметный указатель |
126
1699
522
685
1280
1652
619
1662 1663
240
61
240
160
239
240
161
242 1638
1638
239
1638
1638
1089
1660
1660
1660
1660
558
573
101
238
1684
1509
1668
1287
1287
1660
1649
1287
1652
1291
1652
35
1662
1662 1663
1287
239
as a B-algebra XI.3.2 953
239
241
, , characterizations of 394—396
, , completeness of III.6.6 146 III.9.10
, , criteria for convergence in III.3.6—III.3.7 122—124 III.6.15 IV.15
, , definition III.3.4 121
, , remarks on 387—388
, , separable manifolds in III.8.5 168 III.9.6
, , study of III.3 III.6 IV.8 IV.15
, 0<p<1, definition III.9.29 171
, 0<p<1, properties III.9.29—III.9.31 171
121
119
238
239
241
, definition IV.2.19 241
, study of IV.8 IV.15
869
, 1227
or 9
9
955
566
161
161
19
19
243
1291 1679
1291 1679
or 97
868
, 66
, 61 860
643
1639
1669
1631
96
3
1
182
, 66
134
4
126
4
4
4
126
4
4
26
126
1050
630
4
955
895
1185
602
602
, 1226
557 568 600
242
4
410
642
868
556
1185
1230
642
38
418
99
, 98 130
556
1052
619
249
37 256
11
414
50
1226
1636
72 249
1
566
861
18
556 566
861
875
156
580
1393
1393
580
580
446 963
1639
| 1639
951
888
888
1635
1663
1010
320
875
1645 1660
1089
1089
' 2
((S,T)) 1013
(a,b], etc. 4
(x,y) 242
(x,y)* 1224
a(a) 522
A(d) 242
A(n) 661
A(T,n) 661
a.e. see "Almost everywhere"
Abdelhay, J. 397
Abel summability of series II.4.42 76
Abel, N.H. 76 352 383
Abelian group 34
Absolute convergence, in a B-space 93
Absolutely continuous functions, definition IV.2.22 242
Absolutely continuous functions, set function see "Continuous set function" "Set
Absolutely continuous functions, space of, additional properties IV.15 378
Absolutely continuous functions, space of, definition IV.2.22 242
Absolutely continuous functions, space of, remarks concerning 392
Absolutely continuous functions, space of, study of IV.12.3 338
AC(I) 242
Accumulation, point of I.4.1 10
Adams, C.R. 393
Additive set function see "Set function"
Adjoint element in an algebra with involution 40 see
Adjoint of an operator between B-spaces VI.2
Adjoint of an operator in Hilbert space VI.2.9 479 VI.2.10
Adjoint of an operator, compact operator VI.5.2 485 VI.5.6 VII.4.2
Adjoint of an operator, continuity of operation VI.9.12 513
Adjoint of an operator, criterion for VI.9.13—VI.9.14 513
Adjoint of an operator, remarks on 538
Adjoint of an operator, resolvent of VII.3.7 568
Adjoint of an operator, spectra of VII.3.7 568 VII.5.9—VII.5.10 VII.5.23
Adjoint of an operator, weakly compact operator VI.4.7—VI.4.8 484—485
Adjoint space, definition II.3.7 61
Adjoint space, representation for special spaces IV.15
Affine mapping, definition 456
Affine mapping, fixed points of V.10.6 456
Agmon, S. 1161
Agnew, R.P. 87
Ahiezer, N.I. 926 927 929 1269 1270 1272 1273 1274 1276 1588 1589 1590 1592
Ahlfors, L.V. 48
Akilov, G.P. 554
Alaoglu, L. 235 424 462 463 729
Alexandroff theorem on C(S) convergence of bounded additive set functions IV.9.15 316
Alexandroff theorem on countable additivity of regular set functions on compact spaces III.5.13 138
Alexandroff, A.D. 138 233 316 380—381 390
Alexandroff, P. 47 467
Alexiewicz, A. 82 83 234 235 392 543
Algebra, algebraic preliminaries I.10—I.13
Algebra, B*-algebra IX.3
Algebra, B*-algebra, *-equivalences of B*-algebras IX.3.4 875
Algebra, B*-algebra, *-homomorphism in IX.3.4 875
Algebra, B*-algebra, *-isomorphism of IX.3.4 875
Algebra, B*-algebra, as an algebra of continuous functions IX.3.7 876
Algebra, B*-algebra, non-commutative IX.5 884—866
Algebra, B*-algebra, spectrum of IX.3.4 875
Algebra, B-algebra Chap. IX
Algebra, B-algebra, as an algebra of continuous functions IX.2.9 870
Algebra, B-algebra, as an operator algebra IX.1 860
Algebra, B-algebra, generating set for IX.2.10 870—871
Algebra, B-algebra, ideal in IX.1 865—866
Algebra, B-algebra, quotient IX.1 866
Algebra, B-algebra, radical of IX.2.5 869
Algebra, B-algebra, semi-simple IX.2.5 869
Algebra, B-algebra, structure space of 869
Algebra, boolean see also "Field of sets"
Algebra, Boolean, definition 43
Algebra, Boolean, representation of 44
Algebra, commutative IX.1.1 860 IX.2
Algebra, definition 40
Algebra, of sets see "Field of sets"
Algebra, quotient 40
Almost everywhere (or -almost everywhere) definition for additive scalar set functions III.1.11 100
Almost everywhere (or -almost everywhere) definition for vector-valued set functions IV.10.6 322
Almost periodic functions, definition IV.2.25 242
Almost periodic functions, space of, additional properties IV.15 379
Almost periodic functions, space of, definition IV.2.25 242
Almost periodic functions, space of, remarks concerning 386—387
Almost periodic functions, space of, study of IV.7
Almost uniform (or -uniform convergence) definition III.6.1 145 see
Altman, M.S. 94 609 610
Ambrose, W. 1013 1160 1274
Analytic continuation 230
Analytic function (vector-valued) between complex vector spaces VI.10.5 522
Analytic function (vector-valued), definition 224
Analytic function (vector-valued), properties III.14
Analytic function (vector-valued), space of, definition IV.2.24 242
Analytic function (vector-valued), space of, properties IV.15
Annihilator of a set II.4.17 72
Anzai, H. 386
AP 242
Arens' lemma IX.3.5 875—876
Arens, R.F. 381 382 384 385 396—397 399 466 875 884 886
Arnous, E. 1274
Aronszajn, N. 87 91 234 394 610 928 930 1120
Artemenko, A. 387 392
Arzela theorem on continuity of limit function IV.6.11 268
Arzela theorem, remarks concerning 383
Arzela, C. 266 268 382 383
Ascoli — Arzela theorem on compactness of continuous functions IV.6.7 266
Ascoli — Arzela, remarks concerning 382
Ascoli, G. 266 382 460 466
Atkinson, F.V. 610 611 1615
Atom in a measure space IV.9.6 308
Audin, M. 611
Automorphisms in groups 35
B(s) 240
B*-algebras IX.3 874—879 see
B-algebra see "Algebra"
B-space (or Banach space), basic properties of Chap. II
B-space (or Banach space), definition II.3.2. 59
B-space (or Banach space), integration Chap. III
B-space (or Banach space), special B-spaces Chap. IV
B-space (or Banach space), special B-spaces properties IV.15
Babenko, K.I. 94 1183
Bade, W.G. 538 612 728 928 1269
Baire category theorem I.6.9 20
Baire, R. 20
Baker, H.F. 1588
Banach limits, existence and properties II.4.22—II.4.23 73
Banach theorem on convergence of measurable functions IV.11.2—IV.11.3 332—334
Banach — Stone theorem on equivalence of C-spaces V.8.8 442
Banach — Stone, remarks on 396—397 466
Banach, S. 59 62 73 80 81 82—84 85 86 89 91—93 94 234 332 380 385—386 392 442 462—463 465—466 472 538 539 609
Barankin, E.W. 1163
Bari, N.K. 94
Bartle, R.G. 85 92 233 383 386 389 392 539—540 543
Base (or basis) see also "Hamel base"
Base (or basis) in a B-space, criterion for compactness with IV.5.5 260
Base (or basis) in a B-space, definition II.4.7 71
Base (or basis) in a B-space, properties II.4.8—II.4.12 71
Base (or basis) in a B-space, remarks on 93—94
Base (or basis) in a linear space see "Hamel base"
Base (or basis), orthogonal and orthonormal bases in Hilbert space, definition IV.4.11 252
Base (or basis), orthogonal and orthonormal bases in Hilbert space, existence of IV.4.12 252
Base for a topology, criterion for I.4.7 11
|
|
|
Реклама |
|
|
|