Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)
Dunford N., Schwartz J.T., Bade W.G. — Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear Operators, Part II: Spectral Theory. Self Adjoint Operators in Hilbert Space (Pure and Applied Mathematics: A Series of Texts and Monographs)

Авторы: Dunford N., Schwartz J.T., Bade W.G.

Аннотация:

Because oC the large amount of material presented, we have been prevented from including all the topics originally announced for Part II of Linear Operators. The present volume includes all of the material of our earlier announcement associated with the classical spectral theorem for self adjoint operators in Hilbert space. While there are some isolated discussions of nousel fad joint operators, such as that giving the completeness of the generalized eigenfunctions of Hilbert-Schmidt operators in Section ХТ.в, the general theory of spectral operators and the discussion of nonselfadjoint differential boundary value problems have been postponed for inclusion in the forthcoming Part III of this treatise.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 1084

Добавлена в каталог: 27.02.2015

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Folner, E.      399
Fort, M.K.      471
Fortet, R.      93 406 473
Fourier coefficients, definition      IV.14.12 358
Fourier series, convergence of      IV.14.27 360 IV.14.29—IV.14.33
Fourier series, definition      IV.14.12 358
Fourier series, localization of      IV.14.26 360
Fourier series, multiple series      IV.14.68 367
Fourier series, multiple series, study of      IV.14.69—IV.14.73 367—368
Fourier series, study of      IV.14 IV.14.12—IV.14.20
Fourier sine and cosine theorems      XIII.5 1388
Fourier, J.B.J.      1388
Frechet differential, definition      92
Frechet differential, theory for compact operators      VII.4
Frechet, M.      79 233 373 380 382 387—388 392 730
Fredholm alternative      609—610
Fredholm, I.      79 609 1085
Freudenthal, H.      84 394 395 1273
Friedrichs, K.O.      401 405 407 612 927 1184 1240 1273 1501 1545 1546 1585 1586 1591 1592 1604 1635 1748 1749
Frink, O.      94
Frobenius, G.      607 1080 1147
Fubini theorem, for general finite measure spaces      III.11.13 193
Fubini theorem, for positive $\sigma$-finite measure spaces      III.11.9 190
Fubini — Jessen theorems, mean      III.11.24 207
Fubini — Jessen theorems, pointwise      III.11.27 209
Fubini, G.      190 207 209
Fuchs, L.      1588
Fuglede, B.      934
Fukamiya, M.      466 729 884
Fullerton, R.E.      396 397 540 543 552
Function of an operator      see "Calculus"
Function of bounded variation      III.5.15 140
Function, absolutely continuous      IV.2.22 242
Function, Additive set      see "Set function"
Function, almost periodic      IV.2.25 242 IV.7
Function, analytic      III.14
Function, analytic, between complex vector spaces      VI.10.5 522
Function, Borel — Stieltjes measure of      III.5.17 142
Function, characteristic      3
Function, continuous      I.4.15 13
Function, convex      VI.10.1 520
Function, definition      3
Function, domain of      2—3
Function, entire      231
Function, essential bound or supremum of      III.1.11 100
Function, extension of      3
Function, homeomorphism      I.4.15 13
Function, homomorphism      35 39 40 44
Function, integrable      III.2.17 112 IV.10.7
Function, inverse      3
Function, isometry      II.3.17 65
Function, isomorphism      35 38 39
Function, linear functional      38
Function, linear operator      36
Function, measurable      III.2.10 106 III.2.22 322
Function, metric      I.6.1 18
Function, null      III.2.3 103
Function, one-to-one      3
Function, operator      36
Function, orthonormal system of      IV.14.1 357
Function, projection      I.3.14 9 37 IV.4.8
Function, range of      3
Function, representation of vector valued      III.11.15 194
Function, resolvent      VII.3.1 566
Function, restriction of      3
Function, set      III.1.1 95
Function, simple      III.2.9 105 322
Function, subadditive      618
Function, support      V.1.7 410
Function, tangent      V.9.2 446
Function, total variation of      III.5.15 140
Function, totally measurable      III.2.10 106 see
Function, uniformly continuous      I.6.16 23
Functional(s) in bounded $\mathfrak{X}$ topology      V.5.6 428
Functional(s) in weak and strong operator topologies      VI.1.4 477
Functional(s), bilinear      II.4.4 70
Functional(s), continuous      II.3.7 61
Functional(s), continuous, existence of      II.3.12—II.3.14 64—65
Functional(s), continuous, extension of      II.3.10—II.3.11 62—63
Functional(s), continuous, for representation in special spaces      IV.15
Functional(s), continuous, non-existence of      329—330 392
Functional(s), discontinuous, existence of      I.3.7 8
Functional(s), linear      38
Functional(s), multiplicative      IV.6.23 277
Functional(s), multiplicative, in the unit sphere of C*      V.8.6 441
Functional(s), multiplicative, of $L_{\infty}$      V.8.9 443
Functional(s), separating      V.1.9 411
Functional(s), tangent      V.9.4 447
Functional(s), total space of      V.3.1 418
Functions of an element in a B*-algebra      IX.3.12 878
Functions, special      XIII.9.I 1569
Fundamental family of neighborhoods, definition      I.4.6 10—11
Fundamental set in a linear topological space      II.1.4 50
f{A}      644
Gagaev, B.      93
Gal, I.S.      80 82
Gale, D.      382
Gantmacher, V.      463 485 539
Garabedian, P.R.      88
Garding, L.      1269 1634 1708 1716
Gauss, C.F.      1509
Gavurin, M.K.      612
Gelbaum, B.R.      94
Gelfand — Neumark theorem      IX.3.7 876
Gelfand, I.M.      79 94 232 235 347 384 385 396 407 539 540 543 608 609 876 883 884 1149 1160 1587 1616 1622 1623 1624 1625
Generalized sequence, definition and properties      I.7.1—I.7.7 26—29
Generator, infinitesimal of a semigroup of operators      VIII.1.6 619
Gibbs, J.W.      657
Gillespie, D.C.      462
Giorgi, G.      607
Glazman, I.M.      926 927 929 1269 1270 1272 1273 1274 1587 1588 1589 1590 1591 1592 1599
glb A      3
Glicksberg, I.      381
Glivenko, V.      391
Godement, R.      930 1160 1274
Goedel, K.      47—48
Gohberg, I.C.      610 611 1163
Gol'dman, M.A.      611
Goldstine, H.H.      81 424 463
Gomes, A.P.      399
Goodner, D.B.      398 554
Gowurin, M.      233 391 543 552
Graph of an operator      II.2.3 57
Graph, closed graph theorem      II.2.4 57
Graves, L.M.      48 85 92 232 235 383 391 467 611
Graves, R.E.      406
Graves, R.L.      610
Green's formula      XIII.2.4 1288
Green, G.      1288
Grimshaw, M.E.      606
Grinblyum, M.M.      94
Grosberg, J.      395
Grosberg, Y.      392
Grothendieck, A.      90 383 389 398 399 466 540 543 552 553 610
Group, basic properties      I.10
Group, definition      34
Group, metrizable      90
Group, representations      1145—1149
Group, topological      II.1.1 49
Gurevic, L.A.      94
Haar measure on a compact group      V.11.22—V.11.23 460 XI.1.1
Haar measure on a compact group in a locally compact group      XI.3 950
Haar measure on a compact group in a locally compact group, properties of      XI.11 1150—1155
Haar measure on a compact group, definition      XI.1.2 940
Haar, A.      927 1147 1152 1583 1616 1617
Hadamard three circles theorem      VI.11.48 538
Hadamard, J.      380 538 1018
Hadamard’s inequality      XI.6.12 1018
Hahn decomposition theorem      III.4.10 129
Hahn extension theorem      III.5.8 136
Hahn — Banach theorem      II.3.10 62
Hahn — Banach theorem, discussion of      85—88
Hahn, H.      48 62 80 85 86 88 129 136 158 232 233 234—235 390 539 928 1269
Halberg, C.J.A., Jr.      1087
Halmos, P.R.      48 80 232 235 381 389 390 606 608 722 728 729 926 927 928 929 931 932 933 934 1152 1269
Halperin, I.      400 473 1586 1588 1591
Hamburger moment problem      XII.8.1 1251
Hamburger, H.L.      606 611 1250 1251
Hamel base or basis for general vector spaces      I.14.2 46
Hamel base or basis for real numbers      I.3.7 8
Hamel base or basis, definition      36
Hankel transform      XI.3.23 978 1535
Hankel, H.      1348 1349 1535
Hanson, E.H.      392
Harazov, D.F.      611
Hardy — Hilbert type inequalities      VI.11.19—VI.11.29 531—534
Hardy, G.H.      78 364 531—533 538 541 718 1004 1006 1007 1076 1183 1184 1591
Hartman, P.      399 729 1551 1553 1555 1556 1558 1559 1560 1561 1562 1585 1587 1590 1591 1592 1596 1597 1598 1599 1600 1601 1602 1603 1605 1606 1607 1614 1615 1616 1626
Hatfield, C.      406
Hausdorff $\alpha$-measure      III.9.47 174
Hausdorff maximality theorem      I.2.6 6
Hausdorff space, criterion for      I.7.3 27
Hausdorff space, definition      I.5.1 15
Hausdorff, F.      6 47—48 79 89 174 380 529 539 1250
Heaviside, O.      1648
Heine — Borel theorem      17
Heinz, E.      612 933 935
Heinz, inequality of      X.9 935
Heisenberg, W.      1264
Hellinger, E.      79 80 85 539 609 926 927 928 929 936 1269 1584
Helly, E.      81 86 380 391
Helson, H.      385 1160 1161
Hensel, K.      607
Herglotz, G.      365 1274
Hermitian matrix, definition      561
Hermitian operator, definition      IV.13.72 350 X.4.1
Hewitt, E.      233 373 379 381—382 384—385 387
Heywood, P.      1615
Hilb, E.      608 1583 1584 1585 1589 1590
Hilbert cube      see also "Hilbert space"
Hilbert cube as a fixed point in space      V.10.2—V.10.3 453—454
Hilbert cube, definition and compactness      IV.13.70 350 453
Hilbert proper value integral      XI.7.8 1059
Hilbert Schmidt operators      XI.6
Hilbert Schmidt operators, completeness of eigenfunctions      XI.6.30 1041 XI.6.31
Hilbert Schmidt operators, definition      XI.6.31 1042
Hilbert space, adjoint of an operator      VI.2.9—VI.2.10 479—480
Hilbert space, finite dimensional      IV.2.1 238 IV.3
Hilbert space, general, additional properties      IV.15 379
Hilbert space, general, characterizations of      393—394
Hilbert space, general, definition      IV.2.26 242 1773
Hilbert space, general, remarks on      372—373
Hilbert space, general, study of      IV.4 1773—1784
Hilbert, D.      79—80 372 461 531—532 538—539 608 926 1083 1268 1584 1589 1590 1773
Hildebrandt, T.H.      81 85 92—93 233 373 380 388 391 392 609 1274
Hill, G.W.      1497
Hille — Yosida — Phillips theorem on the generation of semi-groups      VIII.1.13 624
Hille, E.      80 92 543 606 608 610 612 624 726—727 729 883 1118 1162 1274 1628
Hirschman, I.I.      728 1183
Hobson, E.W.      383 1583
Hoelder inequality      III.3.2 119
Hoelder inequality, conditions for equality in      III.9.42 173
Hoelder inequality, generalizations of      VI.11.1—VI.11.2 527 VI.11.13—VI.11.18
Hoelder, E.      119 373 612
Hoermander, L.      1166 1170
Homeomorphism, condition for      I.5.8 18
Homeomorphism, definition      I.4.15 13
Homomorphism between algebras      40
Homomorphism between Boolean algebras      43—44
Homomorphism between groups      35
Homomorphism between rings      39
Homomorphism, natural, between linear spaces      38
Hopf, E.      669 670 722 728 729 1274
Hopf, H.      47 467
Horn, A.      610 1079
Hotta, J.      466
HS      1010
Hukuhara, M.      474
Hurewicz, W.      467 722 729
Hurwitz, W.A.      462
Hyers, D.H.      92 471 609
Hypergeometric series and equation      XIII.8 1509
Ideal(s) in a ring      38
Ideal(s) in an algebra      40
Ideal(s) of operators      552—553 611
Ideal(s), existence of maximal      39
Idempotent element, definition      40
Idempotent operator or projection, definition      37
Imaginary part of a complex number, definition      4
Inaba, M.      474
Independent, linearly      36
Index, definition      VII.1.2 556
Indexed set      3
Inequalities, M. Riesz convexity theorem      VI.10.11 525
Inequalities, M. Riesz convexity theorem, applications to other inequalities      VI.11 526
Inequalities, remarks on      541
Inf A      3
Infimum of a set of real numbers      3
Infimum, limit inferior of a sequence of sets      126
Infimum, limit inferior of a set or sequence of real numbers      4
Infinitesimal generator of a group      627—628
Infinitesimal generator of a semi-group of operators, definition      VIII.1.6 619
Infinitesimal generator of a semi-group of operators, functions of      VIII.2
Infinitesimal generator of a semi-group of operators, perturbation of      VIII.11.19 631
Infinitesimal generator, study of      VIII.1
Ingleton, A.W.      88 400
Inner product in a Hilbert space      IV.2.26 242
Integrable function, conditions for integrability      III.2.22 117 III.3 III.6 IV.8 IV.10.9—IV.10.10
Integrable function, definition      III.2.17 112 IV.10.7
Integrable function, properties      III.2.18—III.2.22 113—117 IV.10.8
Integrable function, simple function, definition      III.2.13 108
Integrable function, simple function, properties      III.2.14—III.2.18 108—113
Integral with vector valued measure      IV.10.7 323
Integral, change of variables      III.10.8 182
Integral, countable additive case      III.6
Integral, extension to positive measurable functions      118—119
Integral, finitely additive case      III.2—III.3 III.2.17
Integral, integration by parts      III.6.22 154
Integral, line integral      225
Integral, summability of      IV.13.78—IV.13.101 351—356
Integral, with operator valued measure      X.I. 893
Interior mapping principle      II.2.1 55
Interior mapping principle, discussion of      83—85
Interior of a set      I.4.1 10
Interior point      I.4.1 10
Internal point, definition      V.1.6 410
Intervals, definitions      4 III.5.15
Invariant measures      V.11.22 460 VI.9.38—VI.9.44
Invariant metric in a group      90—91
Invariant metric in a linear space      II.1.10 51
Invariant set      3
Invariant subgroup      35
Invariant subspace, definition of      X.9 929
Invariant subspace, reducing an operator      X.9 929
Inverse function and inverse image      3
Inverse of an operator and adjoints      VI.2.7 479
Inverse of an operator and adjoints, existence and continuity of      VII.6.1 584
Inverting sequence of polynomials      VIII.2.12 650
Involution in a B-algebra      IX.1.1 860
Involution in an algebra      40
Ionescu Tulcea, C.T.      926
Irregular singularity of a differential equation      XIII.6 1432 1434
Isolated spectral point      VII.3.15 571
Isometry, discussion of      91—92
Isometry, embedding of a B-space into its second conjugate space      II.3.18—II.3.19 66
Isometry, embedding of a B-space into its second conjugate space, isomorphism and equivalence      II.3.17 65
Isomorphism      see also "Homomorphism"
Isomorphism, topological      see "Homeomorphism"
Iyer, V.G.      399
Izumi, S.      235 382 388 392 543 552
1 2 3 4 5 6 7 8 9
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте