Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, sulfur-containing molecules, thiirane      106—108
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules      82—83
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules, carbondisulfide molecules, advantages      97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules, nitrogen dioxide and carbondisulfide vibronic coupling      86—92
Respaud, M.      674(85) 741(85) 764
Reutt, J.E.      84(207) 123
Rice, S.A.      133(59) 232
Riemann Zeta function, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor integral calculations      649—650
Rigatti, G.      439(115) 480
Righini, R.      244(13) 271
Rigid polar molecules, inertial effects, dielectric and birefringence relaxation, free rotational motion equation      419—425
Rigid polar molecules, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields      373—382
Rijkenberg, A.      6—7(43) 101—105(43) 118
Rijs, A.M.      83(204) 123
Riley, S.J.      99—100(268—269) 124—125
Ring-puckering isomerization, time-dependent molecular control, Landau — Zener nonadiabatic transition      215—219
Risken, H.      277—278(9) 295—297(9) 304—309(9) 321(9) 373(79) 396(9) 399(9) 401(9) 416(9) 430(9) 460(9) 463(9) 465—466(9) 468(9) 477 479 489(25—26) 493(25—26) 495(25—26) 505(25—26) 511—512(25—26) 547(25—26) 554(25) 571—572(25—26) 575—576(26) 613(25—26) 616—617(25—26) 656(100) 745(25—26) 761(100) 763 765
Rizos, A.K.      245(18) 271
Robie, D.C.      10(80) 119
Robinson, B.J.      35(115) 120
Rodriguez Juiper, E.N.      59(148) 121
Roebber, J.L.      99(274) 125
Rogers, L.J.      72(193) 122
Rosen — Zener — Demkov model, nonadiabatic transition, noncurve crossing      172—175
Rosen — Zener — Demkov model, nonadiabatic transition, time-dependent molecular control      219—224
Rosen — Zener — Demkov model, nonadiabatic transition, time-dependent molecular control, exponential potential models      224—229
Rosen, N.      128(4) 169(4) 230
Rosen, S.      10(66) 119
Rosenberg, B.J.      93(244) 124
Rosmus, P.      93(245—248) 124
Ross, K.J.      86(233) 123
Rosser, K.N.      99(280) 125
Rostas, F.      93(243) 124
Rostas, J.      93(243) 124
Rotation matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations      587 601—606
Rotational Brownian motion, Kramers reaction rate theory      501—504
Rotational Brownian motion, Kramers reaction rate theory, dielectric relaxation      566—569
Rotational Brownian motion, Kramers reaction rate theory, integral relaxation time      578—579
Rotational Brownian motion, Kramers reaction rate theory, magnetic relaxation, single-domain ferromagnetic particles      561—566
Rotational Brownian motion, Kramers reaction rate theory, magnetocrystalline anisotropy, axially symmetric potentials      570—575
Rotational Brownian motion, Kramers reaction rate theory, mean first passage time escape rate calculation      575—578
Rotational diffusion model, inertial effects, dielectric and birefringence relaxation      416—417
Rotational diffusion model, inertial effects, dielectric and birefringence relaxation, stronge dc electric field      417—425
Rotational diffusion model, mean field potential, cubic potential molecules      439—441
Rotational diffusion model, mean field potential, matrix continued fractions, complex susceptibility      442—446
Rotational diffusion model, orientational relaxation      293—303
Rotational diffusion model, orientational relaxation, Langevin equation approach      293—300
Rotational diffusion model, orientational relaxation, Smoluchowski equation approach      300—303
Rotational diffusion model, strong dc electric fields      329—330
Rotational structure, ammonia molecule spectroscopy      100—105
Rotational structure, NH radical spectroscopy      66—70
Rotational structure, SH radical spectroscopy      48—54
Rothmund, B.      71(174) 122
Rouleau, J.F.      289(42) 373(42) 462(42) 478
Rowland, F.S.      71(165) 122
Roy, D.      84(221) 94(254) 123—124
Roy, P.      84(221) 123
Roychowdhury, V.K.      71(188) 122
Rudolph, H.      42(132—133) 121
Ruehl, E.      71(174) 72(198) 79(198) 122
Ruhman, S.      257(50—51) 272
Runge — Kutta algorithm, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      403—412
Russell, B.R.      106—108(289) 113(299) 114(289 299) 125
Ruzicic, A.      84(213) 123
Rydberg states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation      19—23
Rydberg states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization      17—19
Rydberg states, ammonia molecules      99—105
Rydberg states, CIO radicals      71—81
Rydberg states, CIO radicals, C Rydberg state      78—81
Rydberg states, CIO radicals, E, F, and G Rydberg states      73—77
Rydberg states, laser photoelectron spectroscopy, hydrogen and deuterium dissociative recombination      9—11
Rydberg states, laser photoelectron spectroscopy, molecular excitation      5—8
Rydberg states, NH radical      61—70
Rydberg states, OH radicals, short-lived diatomic structure      36—41
Rydberg states, SH radical      43—59
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy      105—116
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, dimethyl sulfide      113—116
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, methanethiol      108—112
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, thiirane      106—108
Rydberg states, three-atomic molecules      82—83
Rydberg states, three-atomic molecules, $N_{2}O$ and $CS_{2}$      86—92
Rydberg states, three-atomic molecules, carbondisulfide complexes      83—85
Rydberg states, three-atomic molecules, OCS fragmentation      94—97
Ryzhik, I.M.      469(140) 481
Sack, R.A.      417(101—102) 480 494(41) 508(41) 522(41) 548(41) 569(41) 761(41) 763
Saddle point energy, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures      683—690
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula      590—593
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins      594—598
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations      587 600—606
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, left eigenvector      585 598—600
Saddle point energy, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT)      620—623
Saddle point energy, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field      624—625
Sadykov, E.K.      448(128) 481
Saito, S.      71(189) 122 257(87) 260(87) 273
Salpeter, E.E.      32(104) 120
Sander, M.      5(19) 117
Sanders, R.A.      346—347(69) 479
Sarachik, M.P.      211(98) 219(98) 233
Sato, Y.      96—97(260) 124
Saupe, A.      439(114) 480
Scattering matrices, noncurve crossing, nonadiabatic transitions, repulsive potential model      175—178
Scattering matrices, time-dependent level crossings, nonadiabatic transitions      185—188
Scattering matrices, two-state curve crossing, nonadiabatic transitions      140—151
Scattering matrices, two-state curve crossing, nonadiabatic transitions, Landau — Zener model      144—146
Scattering matrices, two-state curve crossing, nonadiabatic transitions, multidimensional problems      164—168
Schatz, G.C.      162(86) 233
Scheper, C.R.      6(25—26 42—44) 7(43—44 49—50) 11—13(25) 16(25) 19(25) 22(25) 23—24(26) 25(25) 28(25—26) 29—31(97) 33(24 97) 34(25) 81(49—50) 82—83(42 49—50) 86—88(42) 90—91(50) 93(25—26) 94(49) 96(50) 97(49—50) 99(50) 101(43—44) 102—103(43) 104(43—44) 105(43) 117—118 120
Scherr, V.      84(216) 93—94(216) 123
Schilling, L.      257(71) 272
Schlag, E.W.      3(5) 5(19—22) 117
Schleich, W.      373(80) 479
Schroedinger's equations, molecular control, time-dependent external fields      212—214
Schroedinger's equations, nonadiabatic transitions, curve crossings, multidimensional problems      163—168
Schroedinger's equations, nonadiabatic transitions, curve crossings, time-dependent framework      131—132
Schroedinger's equations, time-dependent level crossings, nonadiabatic transitions      202—206
Schurgers, M.      36(123) 120
Schuss, Z.      542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763
Schwalm, D.      10(60 62 65) 19(60) 21(60) 119
Schwarzchild, B.      133(68) 232
Schweitzer — Chandler theory, Raman-echo spectroscopy, liquid molecules      256
Schweizer, K.S.      252(42) 256(42) 271
Scodinu, A.      246—247(22) 257(22) 271
Scott, J.D.      113—114(299) 125
Sears, T.J.      93(239) 124
Seaton, H.J.      156(81) 233
Second-order solutions, nonlinear dielectric and birefringence relaxation, perturbation solutions      364—368
Segre, U.      439(115) 480
Seidel, B.      10(65) 119
Seideman, T.      4(14) 117
Sekreta, E.      38(125) 121
Semaniak, J.      10(66) 119
Semiclassical theory, molecular control, time-dependent external fields      212—214
Semiclassical theory, time-dependent level crossings, nonadiabatic transitions      188—201
Semiclassical theory, two-state curve crossing, nonadiabatic transitions, complete solutions      140—151
Semiclassical theory, two-state curve crossing, nonadiabatic transitions, multidimensional problems      165—168
Series representation, Kramers reaction rate theory, crossover between IHD/VLD regimes      648—650
Series representation, Kramers reaction rate theory, crossover between IHD/VLD regimes, convergence radius      665—669
Series representation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution      752—753
SH radical, laser photoelectron spectroscopy      42—59
SH radical, laser photoelectron spectroscopy, autoionization spectra      55—58
SH radical, laser photoelectron spectroscopy, diatomic radicals      42—59
SH radical, laser photoelectron spectroscopy, two-photon excitation spectrum      48—56
SH radical, laser photoelectron spectroscopy, two-state interaction model      45—47
Shaik, S.S.      132(48) 232
Shamsuddin, S.M.      72(192) 122
Shanklin, J.D.      71(162) 122
Shender, E.F.      211(97) 233
Shimada, Y.      244(14) 271
Shirley, D.A.      84(207) 123
Shliomis, M.I.      277(3) 439(3) 446(3) 477
Shobotake, K.      106—108(284) 109(294) 111(294) 113—114(301) 125
Short-lived diatomic radicals, laser photoelectron spectroscopy      35—81
Short-lived diatomic radicals, laser photoelectron spectroscopy, CIO radical      70—81
Short-lived diatomic radicals, laser photoelectron spectroscopy, NH radical      59—70
Short-lived diatomic radicals, laser photoelectron spectroscopy, OH radical      35—42
Short-lived diatomic radicals, laser photoelectron spectroscopy, SH radical      42—59
Siegbahn, K.      84(205) 123 125
Sigray, P.      10(63) 119
Simons, J.P.      40(130) 121
Simpson, D.M.      84(215) 94(252) 123—124
Simpson, W.T.      106—109(287) 111(287) 113(287) 125
Single degree of freedom system, Kramers reaction rate theory, Klein — Kramers derivation, Langevin equation      509—510
Single degree of freedom system, Kramers reaction rate theory, Klein — Kramers derivation, Liouville equation      506—508
Single degree of freedom system, Kramers reaction rate theory, Langevin/Fokker — Planck equations      494—497
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, calculation principles      715—716
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover function proof      717—718
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, divergence of escape rates      706—709
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas      690—694
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, IHD divergence for small departures      681—690
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, notation      675—681
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, theoretical background      674—675
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, VLD limit applications      694—706
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, kinetic equation derivations      710—712
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, partition function, steepest descent evaluation      712—715
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, energy diffusion method      695—698
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, uniaxial perturbations      703—706 725—740
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, uniaxial/LD crossovers      698—703 718—725
Single domain ferromagnetic particles, Kramers reaction rate theory, rotational Brownian motion, magnetic relaxation      561—566
Single domain ferromagnetic particles, relaxation effects      446—460
Single domain ferromagnetic particles, relaxation effects, strong dc field, Langevin equation      447—450
Single domain ferromagnetic particles, relaxation effects, transient nonlinear response      450—456
Single domain ferromagnetic particles, relaxation effects, uniaxial particles, ac/dc bias magnetic fields      456—459
Single oscillation, Kramers reaction rate theory, crossover between IHD/VLD regimes      638—639
Single well potential function, reaction rate theory      487—490
Single-molecule scattering, fifth-order Raman spectroscopy      260
Single-pulse process, nonadiabatic transition, time-dependent molecular control      220—224
Single-pulse process, nonadiabatic transition, time-dependent molecular control, exponential potential models      225—229
Sinha, K.      42(135) 121
Sivakumar, N.      97(261) 124
Skerbele, A.      86(233) 123
Skolnik, E.G.      71—72(184) 77(184) 122
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation      531—543
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, alternative tratement, damping regimes      556—561
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, energy-phase variables      532—535
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, first passage time approach      541—543
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, low-damping regime      531
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, phase variable averaging      535—538
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, very low damping escape rate      538—541
Smith, D.A.      504(63) 580(63) 593(63) 764
Smith, W.H.      31(101) 120
Smits, M.      72(199) 79—81(199) 123
Smoluchowski equation, Brownian motion      278—279
Smoluchowski equation, dielectric relaxation in cubic potential      439—441
Smoluchowski equation, Kramers reaction rate theory, escape rate validity      498—501
Smoluchowski equation, Kramers reaction rate theory, intuitive Klein — Kramers derivation, heat bath effects      511
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation      555—556
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model, very high damping regime      544—547
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations, VHD regimes      547—548
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      521—522
Smoluchowski equation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      568—569
Smoluchowski equation, linear response, integral expression      468
Smoluchowski equation, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response      396—401
Smoluchowski equation, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules      384—394
Smoluchowski equation, nonlinear dielectric and birefringence relaxation      279—283
Smoluchowski equation, nonlinear dielectric and birefringence relaxation, orientational relaxation, strong electric fields, rotational diffusion model      300—303
Smoluchowski equation, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, rigid polar molecules      373—382
Sokolovski, D.      162(86) 233
Solid molecules, Raman-echo spectroscopy      251
Somers, M.R.      6(26) 23—24(6) 28(26) 93(26) 117
Spectral properties, inertial effects, dielectric and birefringence relaxation      429—439
Spectral properties, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      444—446
Spectroscopic processes, nonadiabatic curve crossings      132
Spherical harmonics, orientational relaxation, rotational diffusion model      298—300
Spherical harmonics, superparamagnetic particle relaxation, strong dc magnetic field      448—450
Spiegel, M.R.      628(80) 644(80) 764
Spielfiedel, A.      93(246—248) 124
Spin-echo pulse sequence, Raman-echo spectroscopy      246—256
Spin-orbit split, SH radical spectra      42—44
Stark shifts, SH radical spectroscopy      54
State space, Kramers reaction rate theory, Klein — Kramers equation, probability density evolution      516—520
State variables, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula      589—593
Stationary solutions, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution      520
Stationary solutions, Kramers reaction rate theory, Smoluchowski equation, reaction rate calculations      547—548
Steady-state responses, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules      389—394
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect      347—358
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, activation law behavior      356—358
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, correlation time integral representation      354—356
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, dipole moment evaluations      351—353
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, linear response theory      347—349
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of      353—354
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, transient and relaxation times      350—351
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions      358—373
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, dispersion plots      368—373
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions      362—364
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, second-order solutions      364—368
Steepest descent evaluation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, partition functions      712—715
Steffen, T.      257(58 64—65 82—84) 258(82) 261(64—65 83) 272—273
Steffen, W.      245(16) 271
Stegun, I.      286—287(39) 311(39) 313(39) 334(39) 338(39) 341—342(39) 399—400(39) 421—422(39) 424(39) 426(39) 428(39) 439(39) 470—471(39) 478 649(82) 667—668(82) 691—692(82) 724(82) 736(82) 753—754(82) 757(82) 760(82) 764
Step-on response, dynamic Kerr effect, linear response theory, weak ac electric field steady-state response superimposed on dc bias field      348—349
Step-on response, Kerr effect relaxation, molecular hyperpolarizability      401—412
Step-on response, nonlinear dielectric and birefringent high fields, polar molecules      284—285
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, induced dipole moment      336—340
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, permanent dipole moment      340—343
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, relaxation functions      343—347
Stepanov, V.I.      283(35—36) 292—293(35—36) 448(129 131) 459(129) 478 481 761(98) 765
Stephens, J.A.      7(51 56) 38(51) 40(51 128—129) 42(128—129) 48(51 56 146) 62(160) 66—70(56) 118 121—122
Stephens, T.L.      32(107) 120
Stickland, R.J.      97(265) 99(277—280) 101(277—278) 124—125
Stimson, M.J.      266(103 106—108 113—114) 273
Stochastic equations, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      676—681
Stochastic equations, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation      554—555
Stochastic equations, Kramers reaction rate theory, Langevin/Fokker — Planck equations      493—497
Stochastic equations, orientational relaxation, rotational diffusion model      295—300
Stochastic equations, Stratonovich proof      463—465
Stochastic resonance phenomenon, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution      761
Stock, G.      4(12) 117
Stokes constant, molecular control, time-dependent external fields      208—214
Stokes constant, noncurve crossing, nonadiabatic transitions, exponential potential model      170—172
Stokes constant, time-dependent level crossings, nonadiabatic transitions      186—188
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems      137—151
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener model      142—146
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, nonadiabatic tunneling case      146—151
Stokes' theorem, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations      619—620
Stokes' theorem, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, uniform asymptotic expansion derivation      618—619 627—628
Stolow, A.      4(13—14) 117
Stoneham, A.M.      132(53) 232
Stosszahlansatz mechanism, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      515—516
Stratonovich equations, Brownian motion      492—493
Stratonovich equations, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation      554—555
Stratonovich equations, orientational relaxation, rotational diffusion model      295—300
Stratonovich equations, proof of      463—465
Stratt, R.M.      264(99) 273
Stretching transformation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, mean first passage times (MFPT)      620—623
Strobel, A.      84(208) 123
Stroemholm, C.      10(66) 119
Strong magnetic fields      see also "ac and dc magnetic fields"
Strong magnetic fields, dynamic Kerr effect, research background      277—279
Strong magnetic fields, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model in      417—425
Strong magnetic fields, nonlinear Brownian relaxation, one-dimensional models      307—317
Strong magnetic fields, nonlinear stationary responses, nonstationary ac response      394—401
Strong magnetic fields, nonlinear stationary responses, rigid polar molecules, superimposed ac and dc fields      373—382
Strong magnetic fields, orientational relaxation, rotational diffusion model      293—303
Strong magnetic fields, orientational relaxation, rotational diffusion model, Langevin equation approach      293—300
Strong magnetic fields, orientational relaxation, rotational diffusion model, Smoluchowski equation approach      300—303
Strong magnetic fields, superparamagnetic particle relaxation, Langevin equation approach      447—450
Strong responses, dc electric field, dynamic Kerr effect, exact solutions      330—347
Strong responses, dc electric field, dynamic Kerr effect, problem formulation and solution      317—330
Strong responses, dc electric field, dynamic Kerr effect, relaxation spectra evaluation      343—347
Strong responses, dc electric field, dynamic Kerr effect, relaxation time/spectra evaluation      340—343
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå