Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, sulfur-containing molecules, thiirane 106—108
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules 82—83
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules, carbondisulfide molecules, advantages 97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, three-atomic molecules, nitrogen dioxide and carbondisulfide vibronic coupling 86—92
Respaud, M. 674(85) 741(85) 764
Reutt, J.E. 84(207) 123
Rice, S.A. 133(59) 232
Riemann Zeta function, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor integral calculations 649—650
Rigatti, G. 439(115) 480
Righini, R. 244(13) 271
Rigid polar molecules, inertial effects, dielectric and birefringence relaxation, free rotational motion equation 419—425
Rigid polar molecules, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields 373—382
Rijkenberg, A. 6—7(43) 101—105(43) 118
Rijs, A.M. 83(204) 123
Riley, S.J. 99—100(268—269) 124—125
Ring-puckering isomerization, time-dependent molecular control, Landau — Zener nonadiabatic transition 215—219
Risken, H. 277—278(9) 295—297(9) 304—309(9) 321(9) 373(79) 396(9) 399(9) 401(9) 416(9) 430(9) 460(9) 463(9) 465—466(9) 468(9) 477 479 489(25—26) 493(25—26) 495(25—26) 505(25—26) 511—512(25—26) 547(25—26) 554(25) 571—572(25—26) 575—576(26) 613(25—26) 616—617(25—26) 656(100) 745(25—26) 761(100) 763 765
Rizos, A.K. 245(18) 271
Robie, D.C. 10(80) 119
Robinson, B.J. 35(115) 120
Rodriguez Juiper, E.N. 59(148) 121
Roebber, J.L. 99(274) 125
Rogers, L.J. 72(193) 122
Rosen — Zener — Demkov model, nonadiabatic transition, noncurve crossing 172—175
Rosen — Zener — Demkov model, nonadiabatic transition, time-dependent molecular control 219—224
Rosen — Zener — Demkov model, nonadiabatic transition, time-dependent molecular control, exponential potential models 224—229
Rosen, N. 128(4) 169(4) 230
Rosen, S. 10(66) 119
Rosenberg, B.J. 93(244) 124
Rosmus, P. 93(245—248) 124
Ross, K.J. 86(233) 123
Rosser, K.N. 99(280) 125
Rostas, F. 93(243) 124
Rostas, J. 93(243) 124
Rotation matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations 587 601—606
Rotational Brownian motion, Kramers reaction rate theory 501—504
Rotational Brownian motion, Kramers reaction rate theory, dielectric relaxation 566—569
Rotational Brownian motion, Kramers reaction rate theory, integral relaxation time 578—579
Rotational Brownian motion, Kramers reaction rate theory, magnetic relaxation, single-domain ferromagnetic particles 561—566
Rotational Brownian motion, Kramers reaction rate theory, magnetocrystalline anisotropy, axially symmetric potentials 570—575
Rotational Brownian motion, Kramers reaction rate theory, mean first passage time escape rate calculation 575—578
Rotational diffusion model, inertial effects, dielectric and birefringence relaxation 416—417
Rotational diffusion model, inertial effects, dielectric and birefringence relaxation, stronge dc electric field 417—425
Rotational diffusion model, mean field potential, cubic potential molecules 439—441
Rotational diffusion model, mean field potential, matrix continued fractions, complex susceptibility 442—446
Rotational diffusion model, orientational relaxation 293—303
Rotational diffusion model, orientational relaxation, Langevin equation approach 293—300
Rotational diffusion model, orientational relaxation, Smoluchowski equation approach 300—303
Rotational diffusion model, strong dc electric fields 329—330
Rotational structure, ammonia molecule spectroscopy 100—105
Rotational structure, NH radical spectroscopy 66—70
Rotational structure, SH radical spectroscopy 48—54
Rothmund, B. 71(174) 122
Rouleau, J.F. 289(42) 373(42) 462(42) 478
Rowland, F.S. 71(165) 122
Roy, D. 84(221) 94(254) 123—124
Roy, P. 84(221) 123
Roychowdhury, V.K. 71(188) 122
Rudolph, H. 42(132—133) 121
Ruehl, E. 71(174) 72(198) 79(198) 122
Ruhman, S. 257(50—51) 272
Runge — Kutta algorithm, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 403—412
Russell, B.R. 106—108(289) 113(299) 114(289 299) 125
Ruzicic, A. 84(213) 123
Rydberg states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation 19—23
Rydberg states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization 17—19
Rydberg states, ammonia molecules 99—105
Rydberg states, CIO radicals 71—81
Rydberg states, CIO radicals, C Rydberg state 78—81
Rydberg states, CIO radicals, E, F, and G Rydberg states 73—77
Rydberg states, laser photoelectron spectroscopy, hydrogen and deuterium dissociative recombination 9—11
Rydberg states, laser photoelectron spectroscopy, molecular excitation 5—8
Rydberg states, NH radical 61—70
Rydberg states, OH radicals, short-lived diatomic structure 36—41
Rydberg states, SH radical 43—59
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy 105—116
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, dimethyl sulfide 113—116
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, methanethiol 108—112
Rydberg states, sulfur-containing molecules, laser photoelectron spectroscopy, thiirane 106—108
Rydberg states, three-atomic molecules 82—83
Rydberg states, three-atomic molecules, and 86—92
Rydberg states, three-atomic molecules, carbondisulfide complexes 83—85
Rydberg states, three-atomic molecules, OCS fragmentation 94—97
Ryzhik, I.M. 469(140) 481
Sack, R.A. 417(101—102) 480 494(41) 508(41) 522(41) 548(41) 569(41) 761(41) 763
Saddle point energy, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 683—690
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula 590—593
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 594—598
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations 587 600—606
Saddle point energy, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, left eigenvector 585 598—600
Saddle point energy, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT) 620—623
Saddle point energy, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field 624—625
Sadykov, E.K. 448(128) 481
Saito, S. 71(189) 122 257(87) 260(87) 273
Salpeter, E.E. 32(104) 120
Sander, M. 5(19) 117
Sanders, R.A. 346—347(69) 479
Sarachik, M.P. 211(98) 219(98) 233
Sato, Y. 96—97(260) 124
Saupe, A. 439(114) 480
Scattering matrices, noncurve crossing, nonadiabatic transitions, repulsive potential model 175—178
Scattering matrices, time-dependent level crossings, nonadiabatic transitions 185—188
Scattering matrices, two-state curve crossing, nonadiabatic transitions 140—151
Scattering matrices, two-state curve crossing, nonadiabatic transitions, Landau — Zener model 144—146
Scattering matrices, two-state curve crossing, nonadiabatic transitions, multidimensional problems 164—168
Schatz, G.C. 162(86) 233
Scheper, C.R. 6(25—26 42—44) 7(43—44 49—50) 11—13(25) 16(25) 19(25) 22(25) 23—24(26) 25(25) 28(25—26) 29—31(97) 33(24 97) 34(25) 81(49—50) 82—83(42 49—50) 86—88(42) 90—91(50) 93(25—26) 94(49) 96(50) 97(49—50) 99(50) 101(43—44) 102—103(43) 104(43—44) 105(43) 117—118 120
Scherr, V. 84(216) 93—94(216) 123
Schilling, L. 257(71) 272
Schlag, E.W. 3(5) 5(19—22) 117
Schleich, W. 373(80) 479
Schroedinger's equations, molecular control, time-dependent external fields 212—214
Schroedinger's equations, nonadiabatic transitions, curve crossings, multidimensional problems 163—168
Schroedinger's equations, nonadiabatic transitions, curve crossings, time-dependent framework 131—132
Schroedinger's equations, time-dependent level crossings, nonadiabatic transitions 202—206
Schurgers, M. 36(123) 120
Schuss, Z. 542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763
Schwalm, D. 10(60 62 65) 19(60) 21(60) 119
Schwarzchild, B. 133(68) 232
Schweitzer — Chandler theory, Raman-echo spectroscopy, liquid molecules 256
Schweizer, K.S. 252(42) 256(42) 271
Scodinu, A. 246—247(22) 257(22) 271
Scott, J.D. 113—114(299) 125
Sears, T.J. 93(239) 124
Seaton, H.J. 156(81) 233
Second-order solutions, nonlinear dielectric and birefringence relaxation, perturbation solutions 364—368
Segre, U. 439(115) 480
Seidel, B. 10(65) 119
Seideman, T. 4(14) 117
Sekreta, E. 38(125) 121
Semaniak, J. 10(66) 119
Semiclassical theory, molecular control, time-dependent external fields 212—214
Semiclassical theory, time-dependent level crossings, nonadiabatic transitions 188—201
Semiclassical theory, two-state curve crossing, nonadiabatic transitions, complete solutions 140—151
Semiclassical theory, two-state curve crossing, nonadiabatic transitions, multidimensional problems 165—168
Series representation, Kramers reaction rate theory, crossover between IHD/VLD regimes 648—650
Series representation, Kramers reaction rate theory, crossover between IHD/VLD regimes, convergence radius 665—669
Series representation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution 752—753
SH radical, laser photoelectron spectroscopy 42—59
SH radical, laser photoelectron spectroscopy, autoionization spectra 55—58
SH radical, laser photoelectron spectroscopy, diatomic radicals 42—59
SH radical, laser photoelectron spectroscopy, two-photon excitation spectrum 48—56
SH radical, laser photoelectron spectroscopy, two-state interaction model 45—47
Shaik, S.S. 132(48) 232
Shamsuddin, S.M. 72(192) 122
Shanklin, J.D. 71(162) 122
Shender, E.F. 211(97) 233
Shimada, Y. 244(14) 271
Shirley, D.A. 84(207) 123
Shliomis, M.I. 277(3) 439(3) 446(3) 477
Shobotake, K. 106—108(284) 109(294) 111(294) 113—114(301) 125
Short-lived diatomic radicals, laser photoelectron spectroscopy 35—81
Short-lived diatomic radicals, laser photoelectron spectroscopy, CIO radical 70—81
Short-lived diatomic radicals, laser photoelectron spectroscopy, NH radical 59—70
Short-lived diatomic radicals, laser photoelectron spectroscopy, OH radical 35—42
Short-lived diatomic radicals, laser photoelectron spectroscopy, SH radical 42—59
Siegbahn, K. 84(205) 123 125
Sigray, P. 10(63) 119
Simons, J.P. 40(130) 121
Simpson, D.M. 84(215) 94(252) 123—124
Simpson, W.T. 106—109(287) 111(287) 113(287) 125
Single degree of freedom system, Kramers reaction rate theory, Klein — Kramers derivation, Langevin equation 509—510
Single degree of freedom system, Kramers reaction rate theory, Klein — Kramers derivation, Liouville equation 506—508
Single degree of freedom system, Kramers reaction rate theory, Langevin/Fokker — Planck equations 494—497
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, calculation principles 715—716
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover function proof 717—718
Single domain ferromagnetic particles, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, divergence of escape rates 706—709
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas 690—694
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, IHD divergence for small departures 681—690
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, notation 675—681
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, theoretical background 674—675
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, crossover high damping formulas, VLD limit applications 694—706
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, kinetic equation derivations 710—712
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, partition function, steepest descent evaluation 712—715
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, energy diffusion method 695—698
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, uniaxial perturbations 703—706 725—740
Single domain ferromagnetic particles, Kramers reaction rate theory, interpolation formulas, VLD limit applications, uniaxial/LD crossovers 698—703 718—725
Single domain ferromagnetic particles, Kramers reaction rate theory, rotational Brownian motion, magnetic relaxation 561—566
Single domain ferromagnetic particles, relaxation effects 446—460
Single domain ferromagnetic particles, relaxation effects, strong dc field, Langevin equation 447—450
Single domain ferromagnetic particles, relaxation effects, transient nonlinear response 450—456
Single domain ferromagnetic particles, relaxation effects, uniaxial particles, ac/dc bias magnetic fields 456—459
Single oscillation, Kramers reaction rate theory, crossover between IHD/VLD regimes 638—639
Single well potential function, reaction rate theory 487—490
Single-molecule scattering, fifth-order Raman spectroscopy 260
Single-pulse process, nonadiabatic transition, time-dependent molecular control 220—224
Single-pulse process, nonadiabatic transition, time-dependent molecular control, exponential potential models 225—229
Sinha, K. 42(135) 121
Sivakumar, N. 97(261) 124
Skerbele, A. 86(233) 123
Skolnik, E.G. 71—72(184) 77(184) 122
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation 531—543
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, alternative tratement, damping regimes 556—561
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, energy-phase variables 532—535
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, first passage time approach 541—543
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, low-damping regime 531
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, phase variable averaging 535—538
Small viscosity model, Kramers reaction rate theory, Klein — Kramers equation, very low damping escape rate 538—541
Smith, D.A. 504(63) 580(63) 593(63) 764
Smith, W.H. 31(101) 120
Smits, M. 72(199) 79—81(199) 123
Smoluchowski equation, Brownian motion 278—279
Smoluchowski equation, dielectric relaxation in cubic potential 439—441
Smoluchowski equation, Kramers reaction rate theory, escape rate validity 498—501
Smoluchowski equation, Kramers reaction rate theory, intuitive Klein — Kramers derivation, heat bath effects 511
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation 555—556
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model, very high damping regime 544—547
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations, VHD regimes 547—548
Smoluchowski equation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 521—522
Smoluchowski equation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 568—569
Smoluchowski equation, linear response, integral expression 468
Smoluchowski equation, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response 396—401
Smoluchowski equation, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules 384—394
Smoluchowski equation, nonlinear dielectric and birefringence relaxation 279—283
Smoluchowski equation, nonlinear dielectric and birefringence relaxation, orientational relaxation, strong electric fields, rotational diffusion model 300—303
Smoluchowski equation, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, rigid polar molecules 373—382
Sokolovski, D. 162(86) 233
Solid molecules, Raman-echo spectroscopy 251
Somers, M.R. 6(26) 23—24(6) 28(26) 93(26) 117
Spectral properties, inertial effects, dielectric and birefringence relaxation 429—439
Spectral properties, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 444—446
Spectroscopic processes, nonadiabatic curve crossings 132
Spherical harmonics, orientational relaxation, rotational diffusion model 298—300
Spherical harmonics, superparamagnetic particle relaxation, strong dc magnetic field 448—450
Spiegel, M.R. 628(80) 644(80) 764
Spielfiedel, A. 93(246—248) 124
Spin-echo pulse sequence, Raman-echo spectroscopy 246—256
Spin-orbit split, SH radical spectra 42—44
Stark shifts, SH radical spectroscopy 54
State space, Kramers reaction rate theory, Klein — Kramers equation, probability density evolution 516—520
State variables, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula 589—593
Stationary solutions, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 520
Stationary solutions, Kramers reaction rate theory, Smoluchowski equation, reaction rate calculations 547—548
Steady-state responses, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules 389—394
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect 347—358
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, activation law behavior 356—358
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, correlation time integral representation 354—356
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, dipole moment evaluations 351—353
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, linear response theory 347—349
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of 353—354
Steady-state responses, weak electric field, superimposition on strong dc bias field, dynamic Kerr effect, transient and relaxation times 350—351
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions 358—373
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, dispersion plots 368—373
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions 362—364
Steady-state responses, weak electric field, superimposition on strong dc bias field, perturbation solutions, second-order solutions 364—368
Steepest descent evaluation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, partition functions 712—715
Steffen, T. 257(58 64—65 82—84) 258(82) 261(64—65 83) 272—273
Steffen, W. 245(16) 271
Stegun, I. 286—287(39) 311(39) 313(39) 334(39) 338(39) 341—342(39) 399—400(39) 421—422(39) 424(39) 426(39) 428(39) 439(39) 470—471(39) 478 649(82) 667—668(82) 691—692(82) 724(82) 736(82) 753—754(82) 757(82) 760(82) 764
Step-on response, dynamic Kerr effect, linear response theory, weak ac electric field steady-state response superimposed on dc bias field 348—349
Step-on response, Kerr effect relaxation, molecular hyperpolarizability 401—412
Step-on response, nonlinear dielectric and birefringent high fields, polar molecules 284—285
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, induced dipole moment 336—340
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, permanent dipole moment 340—343
Step-on response, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, relaxation functions 343—347
Stepanov, V.I. 283(35—36) 292—293(35—36) 448(129 131) 459(129) 478 481 761(98) 765
Stephens, J.A. 7(51 56) 38(51) 40(51 128—129) 42(128—129) 48(51 56 146) 62(160) 66—70(56) 118 121—122
Stephens, T.L. 32(107) 120
Stickland, R.J. 97(265) 99(277—280) 101(277—278) 124—125
Stimson, M.J. 266(103 106—108 113—114) 273
Stochastic equations, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 676—681
Stochastic equations, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation 554—555
Stochastic equations, Kramers reaction rate theory, Langevin/Fokker — Planck equations 493—497
Stochastic equations, orientational relaxation, rotational diffusion model 295—300
Stochastic equations, Stratonovich proof 463—465
Stochastic resonance phenomenon, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution 761
Stock, G. 4(12) 117
Stokes constant, molecular control, time-dependent external fields 208—214
Stokes constant, noncurve crossing, nonadiabatic transitions, exponential potential model 170—172
Stokes constant, time-dependent level crossings, nonadiabatic transitions 186—188
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems 137—151
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener model 142—146
Stokes constant, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, nonadiabatic tunneling case 146—151
Stokes' theorem, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations 619—620
Stokes' theorem, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, uniform asymptotic expansion derivation 618—619 627—628
Stolow, A. 4(13—14) 117
Stoneham, A.M. 132(53) 232
Stosszahlansatz mechanism, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 515—516
Stratonovich equations, Brownian motion 492—493
Stratonovich equations, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation 554—555
Stratonovich equations, orientational relaxation, rotational diffusion model 295—300
Stratonovich equations, proof of 463—465
Stratt, R.M. 264(99) 273
Stretching transformation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, mean first passage times (MFPT) 620—623
Strobel, A. 84(208) 123
Stroemholm, C. 10(66) 119
Strong magnetic fields see also "ac and dc magnetic fields"
Strong magnetic fields, dynamic Kerr effect, research background 277—279
Strong magnetic fields, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model in 417—425
Strong magnetic fields, nonlinear Brownian relaxation, one-dimensional models 307—317
Strong magnetic fields, nonlinear stationary responses, nonstationary ac response 394—401
Strong magnetic fields, nonlinear stationary responses, rigid polar molecules, superimposed ac and dc fields 373—382
Strong magnetic fields, orientational relaxation, rotational diffusion model 293—303
Strong magnetic fields, orientational relaxation, rotational diffusion model, Langevin equation approach 293—300
Strong magnetic fields, orientational relaxation, rotational diffusion model, Smoluchowski equation approach 300—303
Strong magnetic fields, superparamagnetic particle relaxation, Langevin equation approach 447—450
Strong responses, dc electric field, dynamic Kerr effect, exact solutions 330—347
Strong responses, dc electric field, dynamic Kerr effect, problem formulation and solution 317—330
Strong responses, dc electric field, dynamic Kerr effect, relaxation spectra evaluation 343—347
Strong responses, dc electric field, dynamic Kerr effect, relaxation time/spectra evaluation 340—343
Ðåêëàìà