Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Nonlinear dielectric relaxation, transient responses in high fields      283—288
Nonlinear dielectric relaxation, transient responses in high fields, build-UP processes, relaxation times      286—288
Nonlinear dielectric relaxation, transient responses in high fields, step-on response, nonpolar polarizable molecules      285—286
Nonlinear dielectric relaxation, transient responses in high fields, step-on response, polar molecules      284—285
Nonlinearity, fifth-order Raman spectroscopy      257—260
Nonlinearity, superparamagnetic particle relaxation, transient nonlinear response      450—456
Nonpolar molecules, ac field responses, dielectric responses      291
Nonpolar molecules, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      315—317
Nonpolar molecules, nonlinear dielectric and birefringence relaxation, step-on response      285—286
Nonpolar molecules, nonlinear dielectric and birefringence relaxation, strong dc electric fields      326—330
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect      347—358
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, activation law behavior      356—358
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation      354—356
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations      351—353
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, linear response theory      347—349
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of      353—354
Nonpolar molecules, weak ac electric field steady-state, response superimposed on dc bias field, dynamic Kerr effect, transient and relaxation times      350—351
Nonstationary ac response, nonlinear Brownian relaxation, strong electric fields      394—401
Noordam, L.D.      10(70) 33—34(70) 119
Nordio, P.L.      280(14) 309(63) 439(14 115 118) 477 479—480
Norell, K.E.      84(205) 123
Normalized relaxation function, nonlinear dielectric and birefringent high fields, transient relaxation      283—288
Normalized relaxation function, orientational relaxation, Smoluchowski equation      301—303
Normand, D.      10(77—78) 119
Nuclear magnetic resonance (NMR), Raman spectroscopy and      236
Numerical applications, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551
Numerical applications, nonadiabatic transitions, curve crossings, multichannel processes      159—161
O'Halloran, M.A.      10(74) 119
OCS molecule, fragmentation processes in      93—97
Off-resonant two-pulse process, nonadiabatic transition, time-dependent molecular control      222—224
Ogawa, S.      282(24) 478
OH radical, laser photoelectron spectroscopy      35—42
OH radical, laser photoelectron spectroscopy, diatomic radicals      35—42
Ohmine, I.      257(87) 260(87) 273
Ohtani, S.      10(61) 119
Oka, S.      282(24) 478
Okamoto, H.      252(39) 271
Okumura, K.      257(76—80) 260(78) 264(75 78) 272
Oldenberg, O.      36(122) 120
Olson, W.B.      71—72(181) 78(181) 122
Ondrey, G.      36(119) 38(119) 120
One-dimensional Raman spectroscopy      236—246
One-dimensional Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      243—246
One-dimensional Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      237—243
One-dimensional relaxation models, nonadiabatic transitions, curve crossings, multidimensional problems      161—168
One-dimensional relaxation models, nonlinear Brownian relaxation, strong electric fields      307—317
One-dimensional rotational diffusion equation, nonlinear dielectric and birefringence relaxation      280—283
One-photon ionization, methanethiol      109—112
One-photon ionization, NH radicals      66—70
One-photon ionization, thiirane molecule      106—108
One-photon ionization, three-atomic molecules, carbondisulfide complexes      84—85
Ono, Y.      94(250) 124
Open channels, two-state curve crossing, nonadiabatic transitions, multichannel processes      153—155
Optical absorption methods, laser photoelectron spectroscopy, molecular excitation      7—8
Optical Kerr effect (OKE) spectroscopy, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      244—247
Optical Kerr effect (OKE) spectroscopy, fifth-order Raman spectroscopy      260
Optical Kerr effect (OKE) spectroscopy, frequency-resolved optical Kerr effect spectroscopy      269—270
Orbital coupling, ammonia molecules      101—105
Orbital coupling, dimethyl sulfide      113—116
Orbital coupling, methanethiol      111—112
Orbital coupling, SH radical, two-state interaction model      45—47
Ordinary differential equation (ODE), Kramers reaction rate theory, escape rate validity      498—501
Ordinary differential equation (ODE), Kramers reaction rate theory, Klein — Kramers equation, linearized solution      525—527
Orientational relaxation, dielectric relaxation in cubic potential      440—441
Orientational relaxation, strong electric fields, rotational diffusion model      293—303
Orientational relaxation, strong electric fields, rotational diffusion model, Langevin equation approach      293—300
Orientational relaxation, strong electric fields, rotational diffusion model, Smoluchowski equation approach      300—303
Ornstein, L.S.      491(16 42) 519(16) 521(42) 528(42) 762—763
Orr, B.J.      401—402(85) 479
Orr-Ewing, A.J.      6(43—44 46) 7(43—44 48—50) 81—83(48—50) 85(48) 89(46) 90—91(50) 92(48) 94(49) 96(50) 97(48—50) 99(50) 101(43—44) 102—103(43) 104(43—44) 105(43) 113—114(46) 116(46) 118
Ortho-hydrogen, (1 + 1' REMPI)      30—34
Ortho-hydrogen, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular photoionization      15—19
Osherov, V.I.      131(31—35) 152(35) 170 34 94) 171(31—32 34) 178(31) 181(31 34) 203(35) 224(32) 231 233
Ostrovsky, V.N.      131(37—38 40 42) 201(40) 204(37) 205(38) 206(42) 231
Osuch, E.A.      94(250) 124
Ouadjou, A.      289—290(47) 478
Ould Ely, T.      674(85) 741(85) 764
Overtone dephasing spectroscopy, principles of      266—269
Pack, R.T.      162(87) 233
Palese, S.      257(71) 272
Paley, R.E.A.C.      492(22) 762
Panina, L.V.      578(107) 759(107) 765
Pankratov, A.L.      745(104) 760(102—104) 765
Pannetier, G.      71(163) 122
Panton, A.W.      707—708(87) 764
Para-hydrogen, (1 + 1' REMPI)      31—34
Para-hydrogen, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular photoionization      15—19
Paranjape, B.V.      289(45) 291(45) 380(45) 478
Park, K.      257(91) 262(97) 264(91) 270(97) 273
Parker, G.A.      162(87) 233
Parkin, J.E.      93(242) 124
Partial differential equation (PDE), Brownian motion principles      491—493
Partial differential equation (PDE), Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      520—522
Partial differential equation (PDE), Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, adjoint Fokker — Planck operator, MFPT      613—617
Partial differential equation (PDE), Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      576—578
Particle current, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, integral current evaluations      600 607—608
Particle current, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, saddle point calculations      587 600—606
Particle current, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, well trapping      587 608—610
Particle friction, Kramers reaction rate theory, crossover between IHD/VLD regimes      631—632
Partition functions, inertial effects, dielectric and birefringence relaxation, dielectric response      426—428
Partition functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes      691—964
Partition functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, equation derivations      679 710—712
Partition functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, steepest descent evaluation      712—715
Partition functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossover      700—701 720—723
Partition functions, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551—555
Partition functions, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations      531
Partition functions, Kramers reaction rate theory, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      312—317
Pascard, H.      626(77) 764
Passion, S.A.      236(5) 270
Patkowski, A.      245(16) 271
Patsilinakou, E.      84(222) 86(235) 123—124
Pauley, M.A.      403(93) 480
Pecora, R.      244(12) 245(16) 271
Peel, J.B.      72(199) 79—81(199) 123
Permanent dipole moment, dynamic Kerr effect, steady-state response, weak ac field on dc bias field      351—353 356—358
Permanent dipole moment, nonlinear dielectric and birefringence relaxation, second-order perturbation solutions      367—368
Permanent dipole moment, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, step-on response      341—343
Perturbation theory, birefringence relaxation, weak electric field, superimposition on strong dc bias field      358—373
Perturbation theory, birefringence relaxation, weak electric field, superimposition on strong dc bias field, dispersion plots      368—373
Perturbation theory, birefringence relaxation, weak electric field, superimposition on strong dc bias field, equilibrium and first-order solutions, matrix continued fractions      362—364
Perturbation theory, birefringence relaxation, weak electric field, superimposition on strong dc bias field, second-order solutions      364—368
Perturbation theory, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial case      703—706 725—740
Perturbation theory, nonlinear dielectric and birefringence relaxation      282—283
Peyerimhoff, S.D.      106—108(290) 125
Pfeiffer, M.      266(110 112 115—117) 269(112) 273
Phase variable averaging, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model      535—538
Phase-matching geometry, fifth-order Raman spectroscopy, intermolecular vibrations      261—264
Phillips, L.F.      71(168) 122
Photodissociation, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules      32—34
Photodissociation, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules      28
Photodissociation, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecules      19—23
Photodissociation, short-lived diatomic radicals, OH radical      36—41
Photoionization, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules      27—28
Photoionization, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecules      12—19
Photoionization, CIO radicals      78—81
Photoionization, NH radical spectroscopy      66—70
Photoionization, SH radical spectroscopy      48—54
Photon echo, Raman-echo spectroscopy      246—256
Pichl, L.      131(34) 133(69) 170—171(34) 181(34) 231—232
Pick, R.M.      245(17 19) 271
Placzek approximation, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      242—243
Placzek approximation, Raman-echo spectroscopy      250
Placzek, G.      242(10) 270
Poisson law, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model      417—425
Polar molecules, ac field responses, dielectric responses      291
Polar molecules, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      568—569
Polar molecules, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response      394—401
Polar molecules, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      312—317
Polar molecules, nonlinear Brownian relaxation, strong electric fields, polar and polarizable molecules      382—394
Polar molecules, nonlinear Brownian relaxation, strong electric fields, rigid molecules in superimposed ac/dc electric fields      373—382
Polar molecules, nonlinear dielectric and birefringence relaxation, step-on response      284—285
Polar molecules, nonlinear dielectric and birefringence relaxation, strong dc electric fields      326—330
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, dynamic Kerr effect      347—358
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, dynamic Kerr effect, activation law behavior      356—358
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation      354—356
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations      351—353
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, linear response theory      347—349
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, relaxation function and times, evaluation of      353—354
Polar molecules, weak ac electric field steady-state response superimposed on dc bias field, transient and relaxation times      350—351
Polarizability tensors, nonlinear dielectric and birefringence relaxation, Smoluchowski equation      280—283
Polarized correlation function, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      242—243
Pople, J.A.      401(84) 479
Porter, G.      71(164) 122
Potential energy, dielectric relaxation in cubic potential      440—441
Poulin, A.      84(221) 94(254) 123—124
Powell, F.X.      71(189) 122
Praestgaarf, E.      613(75) 626(75) 764
Pratt, S.T.      3(9—10) 10(67 72—75 84—85) 12(9) 15(67) 21(84) 38(72) 96(259) 117 119 124
Prefactor calculations, Kramers reaction rate theory, crossover between IHD/VLD regimes, departure from TST      632—634
Prefactor calculations, Kramers reaction rate theory, crossover between IHD/VLD regimes, integral formula for      646—650
Prefactor calculations, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function      639—646
Prefactor calculations, Kramers reaction rate theory, Langevin/Fokker — Planck equations      493—497
Preston, R.K.      131(27) 168(27) 230(27) 231
Price, W.C.      84(215) 94(252) 109(293) 111(293) 113(293) 123—125
Pritchard, H.O.      24(95—96) 120
Probability density, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      677—681
Probability density, Kramers reaction rate theory, Klein — Kramers equation      495—497
Probability density, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, VLD escape rate calculation      539—541
Probability density, Kramers reaction rate theory, Klein — Kramers equation, state space evolution      516—520
Probability density, Kramers reaction rate theory, Langevin/Fokker — Planck equations      493—497
Probability density, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function      746—749
Probability density, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations      749—752
Probability density, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      577—578
Probability density, orientational relaxation, Smoluchowski equation      301—303
Prudnikov, A.D.      757(92) 765
Pshenichnikov, M.S.      236(2—3) 270
Pulse response function, relaxation time, linear response      465—468
Puyuelo, P.      6(45) 7(47) 106—108(47) 109(45) 111(45) 114(47) 118
Q branches, NH radical spectroscopy      62—66
Quadratic model, nonadiabatic transitions, time-dependent level crossings      182—188
Quantum solution, two-state curve crossing, nonadiabatic transitions      140—151
Quantum transitions, fifth-order Raman spectroscopy      257—260
Quasiclassical trajectory (QCT), two-state curve crossing, nonadiabatic transitions, multidimensional problems      168
Rabalais, J.W.      6(30) 84(216) 93—94(216) 117 123
Radiative decay, (1 + 1' REMPI), hydrogen molecules      32—34
Raikher, Yu.L.      277(3) 283(35—36) 292—293(35—36) 439(3) 446(3 123) 447(123) 448(129 131) 455(123) 459(129) 477—478 480—481 761(98) 765
Ram, R.S.      59(150—151) 121
Raman spectroscopy, fifth-order Raman spectroscopy      256—266
Raman spectroscopy, fifth-order Raman spectroscopy, intermolecular vibrations      261—264
Raman spectroscopy, fifth-order Raman spectroscopy, intramolecular vibrations      264—265
Raman spectroscopy, fifth-order Raman spectroscopy, noisy light      266
Raman spectroscopy, fifth-order Raman spectroscopy, principles of      257—260
Raman spectroscopy, frequency-resolved optical Kerr effect spectroscopy      269—270
Raman spectroscopy, one-dimensional Raman spectroscopy      236—246
Raman spectroscopy, one-dimensional Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      243—246
Raman spectroscopy, one-dimensional Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      237—243
Raman spectroscopy, overtone dephasing spectroscopy      266—269
Raman spectroscopy, principles of      235—236
Raman spectroscopy, Raman-echo spectroscopy      246—256
Raman spectroscopy, Raman-echo spectroscopy, liquids      251—256
Raman spectroscopy, Raman-echo spectroscopy, solids and gases      251
Raman spectroscopy, Raman-echo spectroscopy, wave-mixing pathways      249—250
Ramsey, D.A.      71(185—186) 122
Random walk, Brownian motion principles      490—493
Random walk, Kramers' reaction rate theory, low-damping (LD) regime, escape rate calculations      610—613
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas      549—561
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, alternative derivation      552—555
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, damping regimes      550—551
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, linearized solution      527
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, numerical interpretation      551
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, small viscosity alternative      556—561
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, Smoluchowski equation derivation      555—556
Range of validity, Kramers reaction rate theory, Klein — Kramers equation, IHD/VLD formulas, vanishing friction limit      549
Rauk, A.      125
Rayleigh-wing scattering, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      244—246
Rayleigh-wing scattering, fifth-order Raman spectroscopy      256—257
Rayleigh-wing scattering, optical Kerr effect (OKE) spectroscopy, frequency-resolved optical Kerr effect spectroscopy      269—270
Reaction rate theory      486—490 see
Reactive scattering, nonadiabatic transitions, curve crossings, multidimensional problems      162—168
Read, F.H.      5(15) 8(15) 117
Recurrence relation, dynamic Kerr effect, linear response theory, weak ac electric field steady-state response superimposed on dc bias field      349
Recurrence relation, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      406—412
Recurrence relation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit      749—752
Recurrence relation, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules      383—394
Recurrence relation, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, rigid polar molecules      374—382
Recurrence relation, nonlinear dielectric and birefringence relaxation, first-order perturbation solutions      362—364
Recurrence relation, nonlinear dielectric and birefringence relaxation, second-order perturbation solutions      365—368
Recurrence relation, nonlinear dielectric and birefringence relaxation, step-on response, nonpolar molecules      285—286
Recurrence relation, superparamagnetic particle relaxation, transient nonlinear response      451—456
Recurrence relation, superparamagnetic particle relaxation, uniaxial potential      458—460
Reed, C.L.      99(273) 125
Reid, C.J.      416(96) 480
Reilly, J.P.      3(6) 38(125) 117 121
Reineck, I.      84(205) 123
Reinhold, E.      29—31(97) 33(97) 120
Reiser, G.      99(270—271) 125
Relaxation functions, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      353—354
Relaxation functions, nonlinear dielectric and birefringent high fields, build-up processes      286—288
Relaxation functions, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields      343—347
Relaxation functions, superparamagnetic particle relaxation, transient nonlinear response      450—456
Relaxation time, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      350—351 353—354 356—358
Relaxation time, inertial effects, dielectric and birefringence relaxation      429—439
Relaxation time, Kerr effect relaxation, molecular hyperpolarizability, linear ac response and after effect solution      415—416
Relaxation time, linear response, integral expression      465—468
Relaxation time, nonlinear Brownian relaxation, strong external fields      307—317
Rensfelt, K.G.      10(63) 119
Repnow, R.      10(62) 119
Repulsive potential model, noncurve crossing, nonadiabatic transitions      175—178
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, ammonia molecules      99—105
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, CIO radicals      72
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, experimental protocols      8—9
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (1 + 1') REMPI, molecular excited states, hydrogen molecules      29—34
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals      78—81
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, dimethyl sulfide      113—116
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, methanethiol      109—112
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, NH radical      60—61 66—7Ok
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, OH radicals      36—41
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, SH radical      47
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (2 + 1) REMPI, CIO radicals, thiirane molecule      106—108
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, carbon dioxide superexcited states      93
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, carbondisulfide complexes      84—85
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, dimethyl sulfide      113—116
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, methanethiol      109—112
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, molecular excited states, deuterium molecules      23—28
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, molecular excited states, hydrogen molecules      12—23
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, OCS fragmentation      94—97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, (3 + 1) REMPI, thiirane molecule      106—108
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, ammonia molecules      97—105
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, deuterium molecules      9—34
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, deuterium molecules, (3 + 1 REMPI)      23—28
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, hydrogen molecules      9—34
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, hydrogen molecules, (1 + 1' REMPI)      29—34
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, hydrogen molecules, (3 + 1 REMPI)      12—23
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, hydrogen molecules, dissociative recombination (DR)      9—11
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons      81—97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, $CS_{2}$ Rydberg complexes      83—85
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, carbon dioxide excited states      92—93
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, OCS fragmentation      93—97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, REMPI-PES with $CS_{2}$      97
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, structure and properties      81—83
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons, vibronic couplinc, $N_{2}O$ and $CS_{2}$      86—92
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, research background      2—8 4—8
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, short-lived diatomic radicals      35—81
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, short-lived diatomic radicals, CIO radical      70—81
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, short-lived diatomic radicals, NH radical      59—70
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, short-lived diatomic radicals, OH radical      35—42
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, short-lived diatomic radicals, SH radical      42—59
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, sulfur-containing molecules      105—116
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, sulfur-containing molecules, dimethyl sulfide      113—116
Resonance-enhanced multiphoton ionization (REMPI) spectroscopy, molecular excited states, sulfur-containing molecules, methanethiol      108—112
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå