Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Strong responses, dc electric field, nonlinear dielectric relaxation, exact solutions 330—347
Strong responses, dc electric field, nonlinear dielectric relaxation, problem formulation and solution 317—330
Strong responses, dc electric field, nonlinear dielectric relaxation, relaxation spectra evaluation 343—347
Strong responses, dc electric field, nonlinear dielectric relaxation, relaxation time/spectra evaluation 340—343
Strong responses, nonlinear stationary responses, polar and polarizable molecules, superimposed ac and dc bias electric fields 382—394
Strong responses, steady-state response from weak electric field, dynamic Kerr effect 347—358
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, activation law behavior 356—358
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, correlation time integral representation 354—356
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, dipole moment evaluations 351—353
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, linear response theory 347—349
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, relaxation function and times, evaluation of 353—354
Strong responses, steady-state response from weak electric field, dynamic Kerr effect, transient and relaxation times 350—351
Strong responses, steady-state response from weak electric field, perturbation solutions 358—373
Strong responses, steady-state response from weak electric field, perturbation solutions, dispersion plots 368—373
Strong responses, steady-state response from weak electric field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions 362—364
Strong responses, steady-state response from weak electric field, perturbation solutions, second-order solutions 364—368
Stueckelberg, E.C.G. 128—129(3) 133(3) 230
Sturm — Liouville technique, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution 760—762
Sugawara, M. 215—216(99) 233
Sulfur-containing molecules, laser photoelectron spectroscopy 105—116
Sulfur-containing molecules, laser photoelectron spectroscopy, dimethyl sulfide 113—116
Sulfur-containing molecules, laser photoelectron spectroscopy, methanethiol 108—112
Sulfur-containing molecules, laser photoelectron spectroscopy, thiirane 106—108
Sun, X. 131(28) 168(28) 230(28) 231
Sundstroem, G. 10(63—64 66) 119
Sung, J. 262(97) 270(97) 273
Superexcited states, SH radical spectroscopy 58—59
Superexcited states, three-atomic molecules 83
Superexcited states, three-atomic molecules, carbon dioxide molecules 92—93
Superimposed ac/dc magnetic fields, nonlinear Brownian relaxation, anisotropically polarized molecules 383—394
Superimposed ac/dc magnetic fields, nonlinear Brownian relaxation, rigid polar molecules, asymptotic expansion 380—382
Superimposed ac/dc magnetic fields, superparamagnetic particle relaxation, uniaxial potential 456—460
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect 347—358
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, activation law behavior 356—358
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation 354—356
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations 351—353
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, linear response theory 347—349
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, matrix continued fractions 353—354
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of 353—354
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, transient and relaxation times 350—351
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions 358—373
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions, dispersion plots 368—373
Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions 362—364
Superparamagnetic particles, Kramers reaction rate theory, rotational Brownian motion 501—504
Superparamagnetic particles, relaxation effects 446—460
Superparamagnetic particles, relaxation effects, strong dc field, Langevin equation 447—450
Superparamagnetic particles, relaxation effects, transient nonlinear response 450—456
Superparamagnetic particles, relaxation effects, uniaxial particles, ac/dc bias magnetic fields 456—459
Superposition principle, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 638—639
Superposition principle, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function 642—646
Survival process, laser photoelectron spectroscopy, hydrogen and deuterium molecules 9—11
Suto, M. 42(138) 121
Swanson, J.A. 579(71) 581(71) 764
Symmetric stretch, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT) 622—623
Symmetric stretch, OCS fragmentation 93—97
Szabo, A. 309(62) 479
Talkner, P. 486—491(1) 501(1) 504(1) 527(1) 541(1) 576(1) 578—579(1) 581—583(1) 585(1) 588(1) 597(1) 601(1) 608(1) 611(1) 617(1) 620(1) 623(1) 632(1) 635(1) 656(1) 743(1) 762(1) 762
Tanabe, T. 10(61) 119
Tanaka, K. 32(105) 120
Tanaka, Y. 86(232) 94(232) 123
Tanimura, Y. 257(59 71 75—81) 260(78) 264(75 78) 272
Tarjus, G. 254(49) 272
Tasumi, M. 252(38—40) 271
Taylor-series expansion, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations 241—243
Taylor-series expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 683—690
Taylor-series expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, steepest descent evaluation, partition functions 714—715
Taylor-series expansion, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 594—598
Taylor-series expansion, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of 583—588
Taylor-series expansion, Kramers reaction rate theory, Klein — Kramers equation, linearized Klein — Kramers equation, potential barrier summit, IHD regimes 523—524
Taylor-series expansion, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 516—520 518—520
Taylor-series expansion, Kramers reaction rate theory, Langevin/Fokker — Planck equations 495—497
Taylor-series expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT) 620—623
Taylor-series expansion, Stratonovich proof 463—465
Teegan, J.P. 109(293) 111(293) 113(293) 125
Tejada, J. 211(98) 219(98) 233
Temkin, S.I. 278(11) 416—417(11) 428(11) 433(11) 438(11) 477
ter Steege, D.H.A. 72(199) 79—81(199) 123
Teranishi, y. 131(44 46—47) 182(44) 192(44) 206—207(46—47) 212(44) 231
Terazawa, N. 30(100) 32(105—106) 120
Term value plots, NH radical spectroscopy 63—66
Thantu, N. 257(55 57) 272
Theinl, R. 59(154) 121
Thiel, A. 132(57) 232
Thiirane, laser photoelectron spectroscopy 106—108
Thomas, L. 133(67) 211(67) 232 674(85) 741(85) 764
Thouless, D.J. 133(64) 182(64) 232
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy 81—97
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, Rydberg complexes 83—85
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, carbon dioxide excited states 92—93
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, OCS fragmentation 93—97
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, REMPI-PES with 97
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, structure and properties 81—83
Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, vibronic couplinc, and 86—92
Three-dimensional Brownian motion, dielectric and Kerr effect relaxation 462—463
Three-photon excitation, CIO radicals 70—72
Three-photon excitation, CIO radicals, E, F, and G Rydberg states 73—77
Three-photon excitation, thiirane molecule 108
Threshold effect, noncurve crossing, nonadiabatic transitions 181—182
Thurston, G.B. 282(23) 286(23) 292(23) 326(23) 478
Tier, C. 542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763
Time dependence, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations 242—243
Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution 745—749
Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, integral expression of escape time 743—745
Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, principles 741—743
Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, series expression for summit time 752—753
Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, uniaxial anisotropy explicit expression 753—758
Time dependence, nonadiabatic transitions, curve crossings 131—132
Time dependence, nonadiabatic transitions, external fields, molecular control, exponential nonadiabatic transition 224—229
Time dependence, nonadiabatic transitions, external fields, molecular control, Landau — Zener nonadiabiatic transition 215—219
Time dependence, nonadiabatic transitions, external fields, molecular control, laser field control 214—229
Time dependence, nonadiabatic transitions, external fields, molecular control, Rosen — Zener nonadiabiatic transition 219—224
Time dependence, nonadiabatic transitions, external fields, molecular control, theoretical background 206—214
Time dependence, nonadiabatic transitions, level crossings 132—133
Time dependence, nonadiabatic transitions, level crossings, applications 188—201
Time dependence, nonadiabatic transitions, level crossings, Demkov — Osherov model 203—201
Time dependence, nonadiabatic transitions, level crossings, Nikitin's model 201—203
Time dependence, nonadiabatic transitions, level crossings, quadratic solutions 182—188
Time-resolved laser photoelectron spectroscopy, molecular excited states 5—8
Titchmarsh, E.C. 501(35) 632(35) 638—639(35) 644—645(35) 660(35) 763
Titov, S.V. 283(31) 286—287(31) 295(31) 296(55) 298(55) 299(59) 301—302(59) 309(31) 311(31) 316(31) 318(55) 321(55 65—66) 331(31) 333(31) 337(31) 340(31) 439(113) 448(130—133) 449(132) 451—452(130) 455(65) 459(65) 478—481 566(51) 578(60) 579(67) 752(67) 763—764
Titulaer, U.M. 547(47) 763
Tokmakoff, A. 242(11) 257(66—69) 260(66) 261(66 68—69) 264(66—67) 265(67) 267(122) 271—272 274
Tokoue, I. 106—108(284) 109(294) 111(294) 113—114(301) 125
Tolles, W.M. 282—283(18) 289(18) 340(18) 346—347(18 69) 478—479
Tolman, R.C. 504—506(40) 508(40) 763
Tolstikhin, O.I. 162—163(89—90) 164(89) 165(91) 233
Tominaga, K. 252(38—40) 257(60—63) 261(60 62—63) 266—267(118—120) 268—269(119) 271—274
Tonkyn, R.G. 86(228) 123
Torre, R. 245(19) 271
Toth, R.A. 71(180) 122
Trajectory surface hopping (TSH), nonadiabatic transitions, multichannel and multidimensional problems 131
Trajectory surface hopping (TSH), two-state curve crossing, nonadiabatic transitions, multidimensional problems 168
Transient relaxation, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 350—351
Transient relaxation, molecular hyperpolarizability, nonlinear step-on response 403—412
Transient relaxation, nonlinear dielectric and birefringent high fields 283—288
Transient relaxation, nonlinear dielectric and birefringent high fields, build-UP processes, relaxation times 286—288
Transient relaxation, nonlinear dielectric and birefringent high fields, step-on response, nonpolar polarizable molecules 285—286
Transient relaxation, nonlinear dielectric and birefringent high fields, step-on response, polar molecules 284—285
Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, exact solutions 330—347
Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, problem formulation and solution 317—330
Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, relaxation spectra evaluation 343—347
Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, relaxation time/spectra evaluation 340—343
Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, step-on response evaluation 336—340
Transient relaxation, superparamagnetic particle relaxation, nonlinear response 450—456
Transition probabilities, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation 19—23
Transition probabilities, molecular control, time-dependent external fields, theoretical background 206—214
Transition probabilities, nonadiabatic transitions, time-dependent level crossings, generalizations and applications 188—201
Transition probabilities, nonadiabatic transitions, time-dependent level crossings, quadratic model 184—188
Transition probabilities, noncurve crossing, nonadiabatic transitions, attractive potential model 180—181
Transition probabilities, noncurve crossing, nonadiabatic transitions, repulsive potential model 177—178
Transition probabilities, time-dependent level crossings, nonadiabatic transitions 192—201
Transition state theory (TST), Arrhenius law 487—490
Transition state theory (TST), Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 684—690
Transition state theory (TST), Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor escape rate as departure from 632—634
Transition state theory (TST), Kramers reaction rate theory, escape rate validity 499—501
Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD vanishing friction limit 549
Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 529—531
Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, VLD escape rate calculation 539—541
Transition state theory (TST), Kramers reaction rate theory, rotational Brownian motion 501—504
Transmission probability, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, nonadiabatic tunneling case 148—151
Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula 589—593
Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of 581—588
Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 594—598
Transverse susceptibility, inertial effects, dielectric and birefringence relaxation, dielectric response 427—428
Transverse susceptibility, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 429—439
Transverse susceptibility, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 686—690
Transverse susceptibility, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossovers 702—703
Transverse susceptibility, Kramers reaction rate theory, crossover between IHD/VLD regimes, magnetic relaxation 656—657
Transverse susceptibility, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, escape rate, weak transverse field 624—625
Triatomic systems, nonadiabatic curve crossings, multidimensional problems 162—168
Trigonometric equations, inertial effects, dielectric and birefringence relaxation, free rotational motion 421—425
Tronc, E. 674(86) 764
Tschirschwitz, F. 266(116) 273
Tsuboi, T. 10(69 81) 119
Tsuji, M. 84(206) 123 282(19) 462(19) 478
Tsukada, M. 132(51) 232
Tsukiyama, K. 96—97(260) 124
Tully, J.C. 128(9) 131(27 30) 134(9) 162(84) 168(27 30) 230(28 30) 230—231 233
Turnbull, H.W. 585—586(74) 594(74) 764
Turner, D.W. 6(27) 28(27) 117
Turner, M.B.E. 42(137) 121
Tutcher, B. 43(145) 121
Two-color excitation spectra, (1 + 1' REMPI), hydrogen molecules 30—34
Two-color excitation spectra, SH radical spectroscopy 52—54
Two-photon interaction, dimethyl sulfide 114—116
Two-photon interaction, NH radical spectroscopy 62—70
Two-photon interaction, SH radical 45—59
Two-photon interaction, thiirane molecule 107—108
Two-state curve crossing, nonadiabatic transitions, early research on 128—129
Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, complete solutions 134—151
Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, historical background 133—134
Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener case 142—146
Two-state curve crossing, nonadiabatic transitions, multichannel and multidimensional problems, I-matrix propagation 152—153
Two-state curve crossing, nonadiabatic transitions, multichannel and multidimensional problems, research background 130
Two-state curve crossing, noncurve crossing, nonadiabatic transitions, Rosen — Zenker — Demkov model 174—175
Ubachs, W. 29(97—98) 30—31(97) 33(97) 120
Uhlenbeck, G.E. 491(42) 493(29) 512(29) 515(29) 521(42) 528(42) 763
Ukai, M. 30(100) 32(105—106) 34(109) 120
Ullman, R. 352(71) 479
Ulness, D.J. 261(96) 266(96 103—108 111 113—114) 273
Umanskii, S.Ya. 128(6) 169(6) 171(6) 177(6) 201(6) 224(6) 230
Ungerade states, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules 32—34
Ungerade states, three-atomic molecules, carbondisulfide complexes 84—85
Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 684—690
Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, perturbation 703—706 725—740
Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, VLD uniaxial/LD crossovers 698—703 718—720
Uniaxial symmetry, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT) 622—623
Uniaxial symmetry, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution 753—758
Uniaxial symmetry, Kramers reaction rate theory, rotational Brownian motion 502—504
Uniaxial symmetry, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 562—566
Uniaxial symmetry, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 312—317
Uniaxial symmetry, superparamagnetic particle relaxation, superimposed ac/dc bias magnetic fields 456—460
Uniaxial symmetry, superparamagnetic particle relaxation, superimposed ac/dc bias magnetic fields, transient nonlinear response 451—456
Uniform asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 681—690
Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations 611—613
Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, mean first passage time (MFPT) expression 617—619
Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem derivation 618—619 627—628
Unimolecular rate theory, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of 588
Urbain, X. 10(60) 19(60) 21(60) 119
Urban, S. 568(83) 626(83) 741(83) 764
Ushakov, V.G. 131(32) 170—171(32) 224(32) 231
Vaida, V. 72(198) 79(198) 84(219) 99(274) 122—123 125
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy 81—97
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, Rydberg complexes 83—85
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, carbon dioxide excited states 92—93
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, OCS fragmentation 93—97
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, REMPI-PES with 97
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, structure and properties 81—83
Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, vibronic couplinc, and 86—92
Vallance-Jones, A. 35(110) 120
van der Zande, W.J. 6(25) 10(66) 11—13(25) 16(25) 19(25) 22(25) 25(25) 28(25) 33—34(25) 93(25) 117 119
van Dishoeck, E.F. 35—36(116) 120
Van Kampen, N.G. 487—488(27) 489(27—28) 493(27—28) 495(27—28) 497—498(27—28) 505(27—28) 532(27—28) 538(27—28) 547(27) 550(27—28) 613(75) 626(75) 763—764
van Linden van den Heuvell, H.B. 10(68 70—71) 12(68) 17(71) 33(68 70) 34(70) 119
van Veen, N. 36(119) 38(119) 120
van Voorst, J.D.W. 251(34—35) 252(36) 271
Vanden Bout, D. 250(30) 252(30 37 41) 253(37) 254(30 46) 256(30) 277—272
Vanishing friction limit, Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD behavior 549
Vector stochastic differential equation, orientational relaxation, rotational diffusion model 295—300
Veerhuizen, H. 84(205) 123
Velocity distribution, Kramers reaction rate theory, Klein — Kramers equation 520—522
Velocity distribution, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, energy-phase variables 533—535
Verschuur, J.W.J. 10(68 70—71) 12(68) 17(71) 33(68 70) 34(70) 119
Vertal, L.E. 125
Very high damping (VHD) regime, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model 543—548
Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, energy diffusion method 695—698
Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, interpolation formulas 694—695
Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, pertubations, uniaxial case 703—706
Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossovers 698—703
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula 650—655
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula, population proof 672—674
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula, Wiener — Hopf Fourier transforms 669—672
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, energy variance proof 663—664
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, erfc??? proof 668—669
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, escape rate prefactor, TST expression 632—634
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Fokker — Planck equation, energy-action variables 634—637
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Fokker — Planck equation, energy-action variables, right-hand energy diffusion operator 657—658
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Green's function, energy diffusion, proof 659—663
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Green's function, energy diffusion, variables 638—639
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A 646—650
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A, radial convergence proof 665—667
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A, series expression of convergence 667—668
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, magnetic relaxation applications 656—657
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, metastable decay rate, whole damping range 655—656
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, particle crossover 631—632
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, single oscillation expression 658—659
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Wiener — Hopf solution, energy distribution function distribution equation 639—646
Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Wiener — Hopf solution, energy distribution function distribution equation, Fourier transform proofs 664—665
Very low damping (VLD) regimes, Kramers reaction rate theory, escape rate validity 499—501
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity 549—561
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, alternative derivation 552—555
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 550—551
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, linearized solution 527
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, numerical interpretation 551
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, small viscosity alternative 556—561
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, Smoluchowski equation derivation 555—556
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, vanishing friction limit 549
Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 529—531
Very low damping (VLD) regimes, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 570—575
Very low damping (VLD) regimes, Kramers reaction rate theory, small viscosity model, energy-phase variables 532—535
Very low damping (VLD) regimes, Kramers reaction rate theory, small viscosity model, energy-phase variables, small viscosity model, escape rate calculation 538—541
Very low damping (VLD) regimes, Kramers reaction rate theory, Wiener — Hopf integral equation 496—497
Very low damping (VLD) regimes, reaction rate theory 489—490
Vibrational branching ratios, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization 17—19
Vibrational resonant pathways, coherent anti-Stokes Raman scattering (CARS) 237—243
Vibrational resonant pathways, Raman-echo spectroscopy, liquid molecules 252—256
Vibronic structure, ammonia molecules 100—105
Vibronic structure, dimethyl sulfide 114—116
Vibronic structure, three-atomic molecules 81—82
Vibronic structure, three-atomic molecules, and 86—92
Vibronic structure, three-atomic molecules, carbondisulfide complexes 84—85 97
Vidal, C.R. 99—100(275—276) 125
Vidal, M. 125
Visnawathan, K.S. 38(125) 121
Visscher, L. 72(199) 79—81(199) 123
Vogel, K. 656(100) 761(100) 765
Vollmer, H.D. 373(79) 479 656(100) 761(100) 765
Volterra integrodifferential equation, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model 418—425
Voronin, A.I. 170(94) 233
Voronov, G.S. 3(4) 117
Ðåêëàìà