Àâòîðèçàöèÿ 
		         
		        
					
 
		          
		        
			          
		        
			        Ïîèñê ïî óêàçàòåëÿì 
		         
		        
			        
					 
		          
		        
			          
			
			         
       		 
			          
                
                    
                        
                     
                  
		
			          
		        
			          
		
            
	     
	    
	    
            
		
                    Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117 
                  
                
                    
                        
                            
                                
                                    Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå    Íàøëè îïå÷àòêó? 
 
                                
                                    Íàçâàíèå:   Advances in chemical physics. Volume 117Àâòîðû:   Prigogine I., Rice S.A. Àííîòàöèÿ:  Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.    
    This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:  Ðóáðèêà:  Ôèçèêà /Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ:  Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö ed2k:   ed2k stats Ãîä èçäàíèÿ:  2001Êîëè÷åñòâî ñòðàíèö:  831Äîáàâëåíà â êàòàëîã:  03.08.2014Îïåðàöèè:  Ïîëîæèòü íà ïîëêó  |
	 
	Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà  | Ñêîïèðîâàòü ID 
                                 
                             
                        
                     
                 
                                                                
			          
                
                    Ïðåäìåòíûé óêàçàòåëü 
                  
                
                    
                        Strong responses, dc electric field, nonlinear dielectric relaxation, exact solutions       330—347 Strong responses, dc electric field, nonlinear dielectric relaxation, problem formulation and solution       317—330 Strong responses, dc electric field, nonlinear dielectric relaxation, relaxation spectra evaluation       343—347 Strong responses, dc electric field, nonlinear dielectric relaxation, relaxation time/spectra evaluation       340—343 Strong responses, nonlinear stationary responses, polar and polarizable molecules, superimposed ac and dc bias electric fields       382—394 Strong responses, steady-state response from weak electric field, dynamic Kerr effect       347—358 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, activation law behavior       356—358 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, correlation time integral representation       354—356 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, dipole moment evaluations       351—353 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, linear response theory       347—349 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, relaxation function and times, evaluation of       353—354 Strong responses, steady-state response from weak electric field, dynamic Kerr effect, transient and relaxation times       350—351 Strong responses, steady-state response from weak electric field, perturbation solutions       358—373 Strong responses, steady-state response from weak electric field, perturbation solutions, dispersion plots       368—373 Strong responses, steady-state response from weak electric field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions       362—364 Strong responses, steady-state response from weak electric field, perturbation solutions, second-order solutions       364—368 Stueckelberg, E.C.G. 128—129(3) 133(3) 230 Sturm — Liouville technique, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution       760—762 Sugawara, M. 215—216(99) 233 Sulfur-containing molecules, laser photoelectron spectroscopy       105—116 Sulfur-containing molecules, laser photoelectron spectroscopy, dimethyl sulfide       113—116 Sulfur-containing molecules, laser photoelectron spectroscopy, methanethiol       108—112 Sulfur-containing molecules, laser photoelectron spectroscopy, thiirane       106—108 Sun, X. 131(28) 168(28) 230(28) 231 Sundstroem, G.       10(63—64 66) 119 Sung, J. 262(97) 270(97) 273 Superexcited states, SH radical spectroscopy       58—59 Superexcited states, three-atomic molecules       83 Superexcited states, three-atomic molecules, carbon dioxide molecules       92—93 Superimposed ac/dc magnetic fields, nonlinear Brownian relaxation, anisotropically polarized molecules       383—394 Superimposed ac/dc magnetic fields, nonlinear Brownian relaxation, rigid polar molecules, asymptotic expansion       380—382 Superimposed ac/dc magnetic fields, superparamagnetic particle relaxation, uniaxial potential       456—460 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect       347—358 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, activation law behavior       356—358 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation       354—356 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations       351—353 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, linear response theory       347—349 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, matrix continued fractions       353—354 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of       353—354 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, dynamic Kerr effect, transient and relaxation times       350—351 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions       358—373 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions, dispersion plots       368—373 Superimposed ac/dc magnetic fields, weak ac field steady-state response superimposed on dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions       362—364 Superparamagnetic particles, Kramers reaction rate theory, rotational Brownian motion       501—504 Superparamagnetic particles, relaxation effects       446—460 Superparamagnetic particles, relaxation effects, strong dc field, Langevin equation       447—450 Superparamagnetic particles, relaxation effects, transient nonlinear response       450—456 Superparamagnetic particles, relaxation effects, uniaxial particles, ac/dc bias magnetic fields       456—459 Superposition principle, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation       638—639 Superposition principle, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function       642—646 Survival process, laser photoelectron spectroscopy, hydrogen and deuterium molecules       9—11 Suto, M. 42(138) 121 Swanson, J.A. 579(71) 581(71) 764 Symmetric stretch, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT)       622—623 Symmetric stretch, OCS fragmentation       93—97 Szabo, A. 309(62) 479 Talkner, P. 486—491(1) 501(1) 504(1) 527(1) 541(1) 576(1) 578—579(1) 581—583(1) 585(1) 588(1) 597(1) 601(1) 608(1) 611(1) 617(1) 620(1) 623(1) 632(1) 635(1) 656(1) 743(1) 762(1) 762 Tanabe, T. 10(61) 119 Tanaka, K. 32(105) 120 Tanaka, Y. 86(232) 94(232) 123 Tanimura, Y. 257(59 71 75—81) 260(78) 264(75 78) 272 Tarjus, G. 254(49) 272 Tasumi, M. 252(38—40) 271 Taylor-series expansion, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations       241—243 Taylor-series expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures       683—690 Taylor-series expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, steepest descent evaluation, partition functions       714—715 Taylor-series expansion, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins       594—598 Taylor-series expansion, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of       583—588 Taylor-series expansion, Kramers reaction rate theory, Klein — Kramers equation, linearized Klein — Kramers equation, potential barrier summit, IHD regimes       523—524 Taylor-series expansion, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution       516—520 518—520 Taylor-series expansion, Kramers reaction rate theory, Langevin/Fokker — Planck equations       495—497 Taylor-series expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT)       620—623 Taylor-series expansion, Stratonovich proof       463—465 Teegan, J.P. 109(293) 111(293) 113(293) 125 Tejada, J.       211(98) 219(98) 233 Temkin, S.I. 278(11) 416—417(11) 428(11) 433(11) 438(11) 477 ter Steege, D.H.A.       72(199) 79—81(199) 123 Teranishi, y. 131(44 46—47) 182(44) 192(44) 206—207(46—47) 212(44) 231 Terazawa, N. 30(100) 32(105—106) 120 Term value plots, NH radical spectroscopy       63—66 Thantu, N.       257(55 57) 272 Theinl, R.       59(154) 121 Thiel, A. 132(57) 232 Thiirane, laser photoelectron spectroscopy       106—108 Thomas, L. 133(67) 211(67) 232 674(85) 741(85) 764 Thouless, D.J. 133(64) 182(64) 232 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy       81—97 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy,        83—85 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, carbon dioxide excited states       92—93 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, OCS fragmentation       93—97 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, REMPI-PES with        97 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, structure and properties       81—83 Three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, vibronic couplinc,        86—92 Three-dimensional Brownian motion, dielectric and Kerr effect relaxation       462—463 Three-photon excitation, CIO radicals       70—72 Three-photon excitation, CIO radicals, E, F, and G Rydberg states       73—77 Three-photon excitation, thiirane molecule       108 Threshold effect, noncurve crossing, nonadiabatic transitions       181—182 Thurston, G.B. 282(23) 286(23) 292(23) 326(23) 478 Tier, C. 542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763 Time dependence, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations       242—243 Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution       745—749 Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, integral expression of escape time       743—745 Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, principles       741—743 Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, series expression for summit time       752—753 Time dependence, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green's function time evolution, uniaxial anisotropy explicit expression       753—758 Time dependence, nonadiabatic transitions, curve crossings       131—132 Time dependence, nonadiabatic transitions, external fields, molecular control, exponential nonadiabatic transition       224—229 Time dependence, nonadiabatic transitions, external fields, molecular control, Landau — Zener nonadiabiatic transition       215—219 Time dependence, nonadiabatic transitions, external fields, molecular control, laser field control       214—229 Time dependence, nonadiabatic transitions, external fields, molecular control, Rosen — Zener nonadiabiatic transition       219—224 Time dependence, nonadiabatic transitions, external fields, molecular control, theoretical background       206—214 Time dependence, nonadiabatic transitions, level crossings       132—133 Time dependence, nonadiabatic transitions, level crossings, applications       188—201 Time dependence, nonadiabatic transitions, level crossings, Demkov — Osherov model       203—201 Time dependence, nonadiabatic transitions, level crossings, Nikitin's model       201—203 Time dependence, nonadiabatic transitions, level crossings, quadratic solutions       182—188 Time-resolved laser photoelectron spectroscopy, molecular excited states       5—8 Titchmarsh, E.C. 501(35) 632(35) 638—639(35) 644—645(35) 660(35) 763 Titov, S.V. 283(31) 286—287(31) 295(31) 296(55) 298(55) 299(59) 301—302(59) 309(31) 311(31) 316(31) 318(55) 321(55 65—66) 331(31) 333(31) 337(31) 340(31) 439(113) 448(130—133) 449(132) 451—452(130) 455(65) 459(65) 478—481 566(51) 578(60) 579(67) 752(67) 763—764 Titulaer, U.M. 547(47) 763 Tokmakoff, A.       242(11) 257(66—69) 260(66) 261(66 68—69) 264(66—67) 265(67) 267(122) 271—272 274 Tokoue, I.       106—108(284) 109(294) 111(294) 113—114(301) 125 Tolles, W.M. 282—283(18) 289(18) 340(18) 346—347(18 69) 478—479 Tolman, R.C. 504—506(40) 508(40) 763 Tolstikhin, O.I.       162—163(89—90) 164(89) 165(91) 233 Tominaga, K. 252(38—40) 257(60—63) 261(60 62—63) 266—267(118—120) 268—269(119) 271—274 Tonkyn, R.G.       86(228) 123 Torre, R. 245(19) 271 Toth, R.A. 71(180) 122 Trajectory surface hopping (TSH), nonadiabatic transitions, multichannel and multidimensional problems       131 Trajectory surface hopping (TSH), two-state curve crossing, nonadiabatic transitions, multidimensional problems       168 Transient relaxation, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field       350—351 Transient relaxation, molecular hyperpolarizability, nonlinear step-on response       403—412 Transient relaxation, nonlinear dielectric and birefringent high fields       283—288 Transient relaxation, nonlinear dielectric and birefringent high fields, build-UP processes, relaxation times       286—288 Transient relaxation, nonlinear dielectric and birefringent high fields, step-on response, nonpolar polarizable molecules       285—286 Transient relaxation, nonlinear dielectric and birefringent high fields, step-on response, polar molecules       284—285 Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, exact solutions       330—347 Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, problem formulation and solution       317—330 Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, relaxation spectra evaluation       343—347 Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, relaxation time/spectra evaluation       340—343 Transient relaxation, nonlinear dielectric/dynamic Kerr relaxation, strong dc electric field, step-on response evaluation       336—340 Transient relaxation, superparamagnetic particle relaxation, nonlinear response       450—456 Transition probabilities, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation       19—23 Transition probabilities, molecular control, time-dependent external fields, theoretical background       206—214 Transition probabilities, nonadiabatic transitions, time-dependent level crossings, generalizations and applications       188—201 Transition probabilities, nonadiabatic transitions, time-dependent level crossings, quadratic model       184—188 Transition probabilities, noncurve crossing, nonadiabatic transitions, attractive potential model       180—181 Transition probabilities, noncurve crossing, nonadiabatic transitions, repulsive potential model       177—178 Transition probabilities, time-dependent level crossings, nonadiabatic transitions       192—201 Transition state theory (TST), Arrhenius law       487—490 Transition state theory (TST), Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures       684—690 Transition state theory (TST), Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor escape rate as departure from       632—634 Transition state theory (TST), Kramers reaction rate theory, escape rate validity       499—501 Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD vanishing friction limit       549 Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations       529—531 Transition state theory (TST), Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, VLD escape rate calculation       539—541 Transition state theory (TST), Kramers reaction rate theory, rotational Brownian motion       501—504 Transmission probability, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, nonadiabatic tunneling case       148—151 Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula       589—593 Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of       581—588 Transport matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins       594—598 Transverse susceptibility, inertial effects, dielectric and birefringence relaxation, dielectric response       427—428 Transverse susceptibility, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times       429—439 Transverse susceptibility, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures       686—690 Transverse susceptibility, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossovers       702—703 Transverse susceptibility, Kramers reaction rate theory, crossover between IHD/VLD regimes, magnetic relaxation       656—657 Transverse susceptibility, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, escape rate, weak transverse field       624—625 Triatomic systems, nonadiabatic curve crossings, multidimensional problems       162—168 Trigonometric equations, inertial effects, dielectric and birefringence relaxation, free rotational motion       421—425 Tronc, E.       674(86) 764 Tschirschwitz, F.       266(116) 273 Tsuboi, T. 10(69 81) 119 Tsuji, M. 84(206) 123 282(19) 462(19) 478 Tsukada, M. 132(51) 232 Tsukiyama, K. 96—97(260) 124 Tully, J.C. 128(9) 131(27 30) 134(9) 162(84) 168(27 30) 230(28 30) 230—231 233 Turnbull, H.W. 585—586(74) 594(74) 764 Turner, D.W. 6(27) 28(27) 117 Turner, M.B.E. 42(137) 121 Tutcher, B.       43(145) 121 Two-color excitation spectra, (1 + 1' REMPI), hydrogen molecules       30—34 Two-color excitation spectra, SH radical spectroscopy       52—54 Two-photon interaction, dimethyl sulfide       114—116 Two-photon interaction, NH radical spectroscopy       62—70 Two-photon interaction, SH radical       45—59 Two-photon interaction, thiirane molecule       107—108 Two-state curve crossing, nonadiabatic transitions, early research on       128—129 Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, complete solutions       134—151 Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, historical background       133—134 Two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener case       142—146 Two-state curve crossing, nonadiabatic transitions, multichannel and multidimensional problems, I-matrix propagation       152—153 Two-state curve crossing, nonadiabatic transitions, multichannel and multidimensional problems, research background       130 Two-state curve crossing, noncurve crossing, nonadiabatic transitions, Rosen — Zenker — Demkov model       174—175 Ubachs, W.       29(97—98) 30—31(97) 33(97) 120 Uhlenbeck, G.E. 491(42) 493(29) 512(29) 515(29) 521(42) 528(42) 763 Ukai, M. 30(100) 32(105—106) 34(109) 120 Ullman, R. 352(71) 479 Ulness, D.J.       261(96) 266(96 103—108 111 113—114) 273 Umanskii, S.Ya. 128(6) 169(6) 171(6) 177(6) 201(6) 224(6) 230 Ungerade states, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules       32—34 Ungerade states, three-atomic molecules, carbondisulfide complexes       84—85 Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures       684—690 Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, perturbation       703—706 725—740 Uniaxial symmetry, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, VLD uniaxial/LD crossovers       698—703 718—720 Uniaxial symmetry, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT)       622—623 Uniaxial symmetry, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution       753—758 Uniaxial symmetry, Kramers reaction rate theory, rotational Brownian motion       502—504 Uniaxial symmetry, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles       562—566 Uniaxial symmetry, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models       312—317 Uniaxial symmetry, superparamagnetic particle relaxation, superimposed ac/dc bias magnetic fields       456—460 Uniaxial symmetry, superparamagnetic particle relaxation, superimposed ac/dc bias magnetic fields, transient nonlinear response       451—456 Uniform asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures       681—690 Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations       611—613 Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, mean first passage time (MFPT) expression       617—619 Uniform asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem derivation       618—619 627—628 Unimolecular rate theory, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of       588 Urbain, X. 10(60) 19(60) 21(60) 119 Urban, S. 568(83) 626(83) 741(83) 764 Ushakov, V.G. 131(32) 170—171(32) 224(32) 231 Vaida, V. 72(198) 79(198) 84(219) 99(274) 122—123 125 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy       81—97 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy,        83—85 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, carbon dioxide excited states       92—93 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, OCS fragmentation       93—97 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, REMPI-PES with        97 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, structure and properties       81—83 Valence electrons, three-atomic molecules, laser photoelectron spectroscopy, vibronic couplinc,        86—92 Vallance-Jones, A.       35(110) 120 van der Zande, W.J.       6(25) 10(66) 11—13(25) 16(25) 19(25) 22(25) 25(25) 28(25) 33—34(25) 93(25) 117 119 van Dishoeck, E.F.       35—36(116) 120 Van Kampen, N.G. 487—488(27) 489(27—28) 493(27—28) 495(27—28) 497—498(27—28) 505(27—28) 532(27—28) 538(27—28) 547(27) 550(27—28) 613(75) 626(75) 763—764 van Linden van den Heuvell, H.B.       10(68 70—71) 12(68) 17(71) 33(68 70) 34(70) 119 van Veen, N. 36(119) 38(119) 120 van Voorst, J.D.W.       251(34—35) 252(36) 271 Vanden Bout, D.       250(30) 252(30 37 41) 253(37) 254(30 46) 256(30) 277—272 Vanishing friction limit, Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD behavior       549 Vector stochastic differential equation, orientational relaxation, rotational diffusion model       295—300 Veerhuizen, H.       84(205) 123 Velocity distribution, Kramers reaction rate theory, Klein — Kramers equation       520—522 Velocity distribution, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, energy-phase variables       533—535 Verschuur, J.W.J. 10(68 70—71) 12(68) 17(71) 33(68 70) 34(70) 119 Vertal, L.E.       125 Very high damping (VHD) regime, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model       543—548 Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, energy diffusion method       695—698 Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, interpolation formulas       694—695 Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, pertubations, uniaxial case       703—706 Very low damping (VLD) regimes, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossovers       698—703 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula       650—655 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula, population proof       672—674 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, double well potential bridging formula, Wiener — Hopf Fourier transforms       669—672 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, energy variance proof       663—664 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, erfc??? proof       668—669 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, escape rate prefactor, TST expression       632—634 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Fokker — Planck equation, energy-action variables       634—637 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Fokker — Planck equation, energy-action variables, right-hand energy diffusion operator       657—658 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Green's function, energy diffusion, proof       659—663 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Green's function, energy diffusion, variables       638—639 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A       646—650 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A, radial convergence proof       665—667 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, integral formula for prefactor A, series expression of convergence       667—668 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, magnetic relaxation applications       656—657 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, metastable decay rate, whole damping range       655—656 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, particle crossover       631—632 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, single oscillation expression       658—659 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Wiener — Hopf solution, energy distribution function distribution equation       639—646 Very low damping (VLD) regimes, Kramers reaction rate theory, crossover functions, Wiener — Hopf solution, energy distribution function distribution equation, Fourier transform proofs       664—665 Very low damping (VLD) regimes, Kramers reaction rate theory, escape rate validity       499—501 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity       549—561 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, alternative derivation       552—555 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes       550—551 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, linearized solution       527 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, numerical interpretation       551 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, small viscosity alternative       556—561 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, Smoluchowski equation derivation       555—556 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, range of validity, vanishing friction limit       549 Very low damping (VLD) regimes, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations       529—531 Very low damping (VLD) regimes, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy       570—575 Very low damping (VLD) regimes, Kramers reaction rate theory, small viscosity model, energy-phase variables       532—535 Very low damping (VLD) regimes, Kramers reaction rate theory, small viscosity model, energy-phase variables, small viscosity model, escape rate calculation       538—541 Very low damping (VLD) regimes, Kramers reaction rate theory, Wiener — Hopf integral equation       496—497 Very low damping (VLD) regimes, reaction rate theory       489—490 Vibrational branching ratios, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization       17—19 Vibrational resonant pathways, coherent anti-Stokes Raman scattering (CARS)       237—243 Vibrational resonant pathways, Raman-echo spectroscopy, liquid molecules       252—256 Vibronic structure, ammonia molecules       100—105 Vibronic structure, dimethyl sulfide       114—116 Vibronic structure, three-atomic molecules       81—82 Vibronic structure, three-atomic molecules,        86—92 Vibronic structure, three-atomic molecules, carbondisulfide complexes       84—85 97 Vidal, C.R. 99—100(275—276) 125 Vidal, M. 125 Visnawathan, K.S.       38(125) 121 Visscher, L. 72(199) 79—81(199) 123 Vogel, K. 656(100) 761(100) 765 Vollmer, H.D. 373(79) 479 656(100) 761(100) 765 Volterra integrodifferential equation, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model       418—425 Voronin, A.I. 170(94) 233 Voronov, G.S. 3(4) 117 
                            
                     
                  
			Ðåêëàìà