Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
VUV absorption spectroscopy, ammonia molecules      97—105
VUV absorption spectroscopy, CIO radicals      72
VUV absorption spectroscopy, CIO radicals, G Rydberg state      74—77
VUV absorption spectroscopy, dimethyl sulfide      113—116
Wahl, A.C.      93(244) 124
Waldron, J.T.      277(8) 278(8) 295(8) 297(8) 300(8) 304—307(8) 331(8) 337—338(8) 353(8) 416(8) 446(8) 459(134) 460(8) 463(8) 477 481 488—489(5) 491(5) 493—495(5) 505(5) 509—512(5) 521—522(5) 528(5) 547(5) 554(5) 563(5) 565—566(5 57) 571(5 54) 578(57) 753(54 56) 755(54 56) 756(56) 578—579(5) 612(5) 622(5) 629(5) 542—743(5) 745(5) 749—750(5) 752—755(5) 761(5) 762—763
Wales, N.P.L.      6(39 45—46) 7(57—58) 59—60(39) 72—75(194) 77(194) 89(46) 109(45 293) 111(45 293) 113(46 293) 114(46) 116(46) 118 122 125
Wall, H.S.      338(67) 479
Walsh, A.D.      97(264) 124
Walsh, C.A.      246(27) 271
Wang, C.H.      403(93) 480
Wang, K.      5(21) 7(51—52 54 56—57) 38(51 127) 40(51 127) 48(51—52 54 56 146) 49(54) 51(54) 56(52 54) 62(160) 66—70(56) 72(190) 74(190) 117—118 121—122
Wang, L.S.      84(207) 123
Wang, M.C.      493(29) 512(29) 515(29) 763
Wang, X.      42(138) 121
Wang, X.T.      84(223—224) 123
Wang, Yumin      36—37(118) 39—40(118) 120
Wanneberg, B.      84(205) 123
Ward, J.F.      402(90) 480
Warsop, P.A.      97(264) 124
Wassermann, B.      71(174) 122
Watanabe, H.      282(17 19 21 26) 283(17 26 37) 289(21 26) 292(26) 309(37) 462(17 19 21) 478
Watanabe, K.      86(231) 94(253) 123—124 277—278(2) 281—286(2) 288(2) 293(2) 317(2) 326(2) 336(2) 339(2) 342(2) 361(2) 477
Watanabe, T.      10(61) 119
Watson, G.N.      422(110) 440(110) 480 742(88) 764
Watson, R.T.      71(169—170) 122
Wave-mixing pathways, Raman-echo spectroscopy      249—250
Wax, N.      491—493(14) 505(14) 512—513(14) 519(14) 521(14) 762
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect      347—358
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, activation law behavior      356—358
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, correlation time integral representation      354—356
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, dipole moment evaluations      351—353
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, linear response theory      347—349
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of      353—354
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, transient and relaxation times      350—351
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions      358—373
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, dispersion plots      368—373
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions      362—364
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, second-order solutions      364—368
Webb, H.M.      125
Weber, H.L.      628(79) 764
Weiss, G.H.      409(12) 762
Welcker, S.      79(202) 123
Welge, K.H.      36(123) 120
Wentzel — Kramers — Brillouin (WKB)technique, time-dependent level crossings, nonadiabatic transitions      185—188
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems      134
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener model      136—151
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, multichannel processes      153—161
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, multidimensional problems      164—168
Wentzel — Kramers — Brillouin — Jeffreys (WKBJ) technique, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes      692—694
Wentzel — Kramers — Brillouin — Jeffreys (WKBJ) technique, Kramers reaction rate theory, rotational Brownian motion      504
Werner, H.-J.      93(245—248) 124
Wernsdorfer, W.      489(59) 574(59) 626(11—18) 764
Wester, R.      10(60) 19(60) 21(60) 119
Western, C.M.      6(38 43—44) 7(43—44 53) 43(53 145) 55—56(53) 59(38 153 156 158) 62—65 66(38 156 158) 72(193) 99(277—278 280) 101(43—44 277—278 283) 102—103(44) 105(43—44) 118 122
Westwood, N.P.C.      6(35 38—39) 7(35 55—56) 48(56) 59(38—39 55) 60(39) 62—65(38) 66(38 55—56) 67—70(56) 72(199) 78—81(199) 118 123
White noise, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551—555
White noise, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      567—569
White noise, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      563—566
White, M.G.      86(228) 123
Whittaker, E.T.      422(110) 440(110) 480 742(88) 764
Wiedmann, R.T.      86(228 235) 123—124
Wiener process, Brownian motion principles      491—493
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes      632
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential bridging formula      651—655
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential Fourier transforms      669—674
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, energy distribution function      639—646
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation      637
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fourier transforms, proofs      664—665
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation      638—639
Wiener — Hopf integral equation, Kramers reaction rate theory, damping regimes      497
Wiener — Hopf integral equation, Kramers reaction rate theory, escape rate validity      501
Wiener — Hopf integral equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551
Wiener, N.      492(22) 762
Wieringa, D.M.      5(16) 8(16) 117
Wiersma, D.A.      236(2—3) 270
Wigner's threshold law, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules      32—34
Wilden, D.G.      84(220) 123
Wilemski, G.      547(48) 763
Wilkinson, P.G.      12(86) 119
Williams, R.T.      132(54) 232
Wilson, S.H.S.      99(292) 125
Wilson, W.J.      35(114) 120
Woggon, S.      266(110) 273
Wolf, A.      10(60 62 65) 19(60) 21(60) 119
Wolniewicz, L.      20(92) 21(93) 31(103) 120
Wonneberger, W.      373(79) 479
Woutersen, S.      6—7(36—37) 118
Wright, J.      71(164) 122
Wright, J.C.      257(92) 264(92) 273
Wuerflinger, A.      568(83) 626(83) 741(83) 764
Wuppertal Bonn self-consistent field (SCF) method, NH radical spectroscopy      60—61
Wynne, K.      252(36) 271
Xie, J.      15(89) 119
Xie, X.B.      84(223—224) 123
Xu, E.Y.      10(69 81—82) 119
XUV laser source, (1 + 1' REMPI), hydrogen molecules      29—34
Yamada, C.      93(238) 124
Yamazaki, T.      6(33) 109(33) 113(33) 117
Yang, B.      94(257) 124
Yang, X.-F.      93(243) 124
Yau, A.W.      24(95) 120
Yoshihara, K.      252(38—40) 257(60—63) 261(60—63) 266—267(118—119) 268—269(119) 271—273
Yoshimori, A.      132(51) 232
Yoshioka, K.      282—283(17) 462(17) 478
Yoshizawa, M.      10(61) 119
Yung, W.G.      283(34) 403(34) 478
Zajfman, D.      10(60 62 65) 19(60) 21(60) 119
Zakrzewski, J.      133(58) 232
Zanon, I.      84(214) 123
Zare, R.N.      15(89) 22(94) 119—120 298—299(57) 302—303(57) 449(57) 479
Zelikoff, M.      86(231) 123
Zener, C.      128(2 4) 129(2) 131(2) 133(2) 169(4) 230
Zengin, V.      10(66) 119
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function      745—749
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression      744—745
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, recurrence relations      749—752
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, uniaxial anisotropy      754—758
Zero frequency, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      576—578
Zero kinetic energy electron detection (ZEKE), "magnetic bottle" analyzer      8—9
Zero kinetic energy electron detection (ZEKE), laser photoelectron spectroscopy      5—8
Zero kinetic energy electron detection (ZEKE)-PFI, SH radical      43—45 52—54
Zewail, A.H.      71(177) 122
Zgierski, M.Z.      4(14) 117
Zhang, J.      71(167) 122
Zhang, W.M.      257(74) 272
Zhou, Y.      269(123—124) 274
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems      130—131
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, Landau — Zener model compared with      144—146
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, time-dependent framework      130—132
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, two-state curve crossing, Landau — Zener — Stueckelberg problems      141—142
Zhu, C.      129(12—21) 130(21 24—26) 137(13) 138(17) 140(13) 141(13 19) 142(18) 143(18—19) 146(18—19) 152(24—25) 159—160(25) 163(26) 165—166(26) 170(92—93) 175(93) 177(93) 181(93) 186(13) 188(13) 192(17—18) 198(24—25) 231 233
Ziegler, L.D.      269(123—124) 274
Zimmerman, M.L.      182(96) 233
Ziolo, R.      211(98) 219(98) 233
Zucker, C.W.      10(76) 119
Zyss, J.      403(94) 480
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå