Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
VUV absorption spectroscopy, ammonia molecules 97—105
VUV absorption spectroscopy, CIO radicals 72
VUV absorption spectroscopy, CIO radicals, G Rydberg state 74—77
VUV absorption spectroscopy, dimethyl sulfide 113—116
Wahl, A.C. 93(244) 124
Waldron, J.T. 277(8) 278(8) 295(8) 297(8) 300(8) 304—307(8) 331(8) 337—338(8) 353(8) 416(8) 446(8) 459(134) 460(8) 463(8) 477 481 488—489(5) 491(5) 493—495(5) 505(5) 509—512(5) 521—522(5) 528(5) 547(5) 554(5) 563(5) 565—566(5 57) 571(5 54) 578(57) 753(54 56) 755(54 56) 756(56) 578—579(5) 612(5) 622(5) 629(5) 542—743(5) 745(5) 749—750(5) 752—755(5) 761(5) 762—763
Wales, N.P.L. 6(39 45—46) 7(57—58) 59—60(39) 72—75(194) 77(194) 89(46) 109(45 293) 111(45 293) 113(46 293) 114(46) 116(46) 118 122 125
Wall, H.S. 338(67) 479
Walsh, A.D. 97(264) 124
Walsh, C.A. 246(27) 271
Wang, C.H. 403(93) 480
Wang, K. 5(21) 7(51—52 54 56—57) 38(51 127) 40(51 127) 48(51—52 54 56 146) 49(54) 51(54) 56(52 54) 62(160) 66—70(56) 72(190) 74(190) 117—118 121—122
Wang, L.S. 84(207) 123
Wang, M.C. 493(29) 512(29) 515(29) 763
Wang, X. 42(138) 121
Wang, X.T. 84(223—224) 123
Wang, Yumin 36—37(118) 39—40(118) 120
Wanneberg, B. 84(205) 123
Ward, J.F. 402(90) 480
Warsop, P.A. 97(264) 124
Wassermann, B. 71(174) 122
Watanabe, H. 282(17 19 21 26) 283(17 26 37) 289(21 26) 292(26) 309(37) 462(17 19 21) 478
Watanabe, K. 86(231) 94(253) 123—124 277—278(2) 281—286(2) 288(2) 293(2) 317(2) 326(2) 336(2) 339(2) 342(2) 361(2) 477
Watanabe, T. 10(61) 119
Watson, G.N. 422(110) 440(110) 480 742(88) 764
Watson, R.T. 71(169—170) 122
Wave-mixing pathways, Raman-echo spectroscopy 249—250
Wax, N. 491—493(14) 505(14) 512—513(14) 519(14) 521(14) 762
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect 347—358
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, activation law behavior 356—358
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, correlation time integral representation 354—356
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, dipole moment evaluations 351—353
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, linear response theory 347—349
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of 353—354
Weak electric fields, steady-state response, superimposition on strong dc bias field, dynamic Kerr effect, transient and relaxation times 350—351
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions 358—373
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, dispersion plots 368—373
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions 362—364
Weak electric fields, steady-state response, superimposition on strong dc bias field, perturbation solutions, second-order solutions 364—368
Webb, H.M. 125
Weber, H.L. 628(79) 764
Weiss, G.H. 409(12) 762
Welcker, S. 79(202) 123
Welge, K.H. 36(123) 120
Wentzel — Kramers — Brillouin (WKB)technique, time-dependent level crossings, nonadiabatic transitions 185—188
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems 134
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems, Landau — Zener model 136—151
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, multichannel processes 153—161
Wentzel — Kramers — Brillouin (WKB)technique, two-state curve crossing, nonadiabatic transitions, multidimensional problems 164—168
Wentzel — Kramers — Brillouin — Jeffreys (WKBJ) technique, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes 692—694
Wentzel — Kramers — Brillouin — Jeffreys (WKBJ) technique, Kramers reaction rate theory, rotational Brownian motion 504
Werner, H.-J. 93(245—248) 124
Wernsdorfer, W. 489(59) 574(59) 626(11—18) 764
Wester, R. 10(60) 19(60) 21(60) 119
Western, C.M. 6(38 43—44) 7(43—44 53) 43(53 145) 55—56(53) 59(38 153 156 158) 62—65 66(38 156 158) 72(193) 99(277—278 280) 101(43—44 277—278 283) 102—103(44) 105(43—44) 118 122
Westwood, N.P.C. 6(35 38—39) 7(35 55—56) 48(56) 59(38—39 55) 60(39) 62—65(38) 66(38 55—56) 67—70(56) 72(199) 78—81(199) 118 123
White noise, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 551—555
White noise, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 567—569
White noise, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 563—566
White, M.G. 86(228) 123
Whittaker, E.T. 422(110) 440(110) 480 742(88) 764
Wiedmann, R.T. 86(228 235) 123—124
Wiener process, Brownian motion principles 491—493
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes 632
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential bridging formula 651—655
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential Fourier transforms 669—674
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, energy distribution function 639—646
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation 637
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fourier transforms, proofs 664—665
Wiener — Hopf integral equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 638—639
Wiener — Hopf integral equation, Kramers reaction rate theory, damping regimes 497
Wiener — Hopf integral equation, Kramers reaction rate theory, escape rate validity 501
Wiener — Hopf integral equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 551
Wiener, N. 492(22) 762
Wieringa, D.M. 5(16) 8(16) 117
Wiersma, D.A. 236(2—3) 270
Wigner's threshold law, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules 32—34
Wilden, D.G. 84(220) 123
Wilemski, G. 547(48) 763
Wilkinson, P.G. 12(86) 119
Williams, R.T. 132(54) 232
Wilson, S.H.S. 99(292) 125
Wilson, W.J. 35(114) 120
Woggon, S. 266(110) 273
Wolf, A. 10(60 62 65) 19(60) 21(60) 119
Wolniewicz, L. 20(92) 21(93) 31(103) 120
Wonneberger, W. 373(79) 479
Woutersen, S. 6—7(36—37) 118
Wright, J. 71(164) 122
Wright, J.C. 257(92) 264(92) 273
Wuerflinger, A. 568(83) 626(83) 741(83) 764
Wuppertal Bonn self-consistent field (SCF) method, NH radical spectroscopy 60—61
Wynne, K. 252(36) 271
Xie, J. 15(89) 119
Xie, X.B. 84(223—224) 123
Xu, E.Y. 10(69 81—82) 119
XUV laser source, (1 + 1' REMPI), hydrogen molecules 29—34
Yamada, C. 93(238) 124
Yamazaki, T. 6(33) 109(33) 113(33) 117
Yang, B. 94(257) 124
Yang, X.-F. 93(243) 124
Yau, A.W. 24(95) 120
Yoshihara, K. 252(38—40) 257(60—63) 261(60—63) 266—267(118—119) 268—269(119) 271—273
Yoshimori, A. 132(51) 232
Yoshioka, K. 282—283(17) 462(17) 478
Yoshizawa, M. 10(61) 119
Yung, W.G. 283(34) 403(34) 478
Zajfman, D. 10(60 62 65) 19(60) 21(60) 119
Zakrzewski, J. 133(58) 232
Zanon, I. 84(214) 123
Zare, R.N. 15(89) 22(94) 119—120 298—299(57) 302—303(57) 449(57) 479
Zelikoff, M. 86(231) 123
Zener, C. 128(2 4) 129(2) 131(2) 133(2) 169(4) 230
Zengin, V. 10(66) 119
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function 745—749
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression 744—745
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, recurrence relations 749—752
Zero frequency, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, uniaxial anisotropy 754—758
Zero frequency, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation 576—578
Zero kinetic energy electron detection (ZEKE), "magnetic bottle" analyzer 8—9
Zero kinetic energy electron detection (ZEKE), laser photoelectron spectroscopy 5—8
Zero kinetic energy electron detection (ZEKE)-PFI, SH radical 43—45 52—54
Zewail, A.H. 71(177) 122
Zgierski, M.Z. 4(14) 117
Zhang, J. 71(167) 122
Zhang, W.M. 257(74) 272
Zhou, Y. 269(123—124) 274
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems 130—131
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, Landau — Zener model compared with 144—146
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, time-dependent framework 130—132
Zhu — Nakamura theory, nonadiabatic transitions, multichannel and multidimensional problems, two-state curve crossing, Landau — Zener — Stueckelberg problems 141—142
Zhu, C. 129(12—21) 130(21 24—26) 137(13) 138(17) 140(13) 141(13 19) 142(18) 143(18—19) 146(18—19) 152(24—25) 159—160(25) 163(26) 165—166(26) 170(92—93) 175(93) 177(93) 181(93) 186(13) 188(13) 192(17—18) 198(24—25) 231 233
Ziegler, L.D. 269(123—124) 274
Zimmerman, M.L. 182(96) 233
Ziolo, R. 211(98) 219(98) 233
Zucker, C.W. 10(76) 119
Zyss, J. 403(94) 480
Ðåêëàìà