Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Kramers reaction rate theory, trapped particles, proof of      608—610
Kramers — Moyal expansion, Kramers reaction rate theory, Langevin/Fokker — Planck equations      495—497
Kramers, H.A.      435—436(112) 439—440(112) 480 487—489(4) 491(1) 494(4) 497(4) 505(4) 509(4) 512(4) 516—517(4) 520(4) 524(4) 541(4) 549(4) 588(4) 611—613(4) 637(4) 762
Krauss, M.J.      158(83) 233
Kreher, C.J.      71(172) 122
Kronecker's delta, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      567—569
Kronecker's delta, orientational relaxation, rotational diffusion model      294—300
Krook, M.      417(98) 480
Kruit, P.      5(15) 8(15) 117
Kubo line shape theory, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      241—243
Kubo line shape theory, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      309—317
Kubo line shape theory, overtone dephasing spectroscopy      267—269
Kubo, O.      626(77) 764
Kubo, R.      241(9) 267(9) 270 307(61) 309(61) 479
Kuijt, J.      6(42) 82—83(42) 86—88(42) 118
Kummer's function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, uniaxial anisotropy      753—758
Kummrow, A.      266(109—110 115 117) 273
Kunike, M.      131(36) 203(36) 231
Kupperman, A.      162(86) 230(102) 233
Kurnit, N.A.      246(26) 271
Kus, M.      133(58) 232
Kutina, R.E.      109(295) 125
Kuyatt, C.E.      86(234) 124
L'Hopital's rule, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation      636—637
Lagrange — Sylvester formula, molecular control, time-dependent external fields      209—214
Lame's equation, inertial effects, dielectric and birefringence relaxation, free rotational motion      422—425
Lampert, A.      10(62) 119
Landau — Lifshitz equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      676—681
Landau — Lifshitz equation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, boundary layer approximation      629—630
Landau — Lifshitz equation, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      575—578
Landau — Lifshitz equation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      563—566
Landau — Zener model, level crossings, nonadiabatic transitions, time-dependence      182—188
Landau — Zener model, nonadiabatic transition, time-dependent molecular control      215—219
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, complete solutions      139—146
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, limits of      128—129
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes      152—153
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes, adiabatic potentials, higher energies than      155—156
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes, adiabatic potentials, lower energies than      156—159
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, research background      134
Landau — Zener — Stueckelberg problems, time-dependent molecular control      215—219
Landau — Zener — Stueckelberg problems, time-dependent molecular control, exponential potential models      224—229
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, complete solutions      134—151
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, historical background      133—134
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, Landau — Zener case      142—146
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, tunneling case      146—151
Landau, L.D.      128—129(1) 133(1) 230 301(60) 479
Landauer, R.      133(61—62) 182(61—62) 232 579(71) 581(71) 764
Lane, C.K.      36(122) 120
Lang, M.J.      257(67—69) 261(68—69) 264—265(67) 272
Lange, M.      10(60) 19(60) 21(60) 119
Langelaar, J.      251(34—35) 271
Langer formalism, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures      682—690
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, background      579—581
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers formula in context of      589—593
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins      593—598
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, principles      581—588
Langer formalism, Kramers reaction rate theory, Klein — Kramers equation, linearized solution      525—527
Langer, J.S.      489(61) 498(61) 570(61) 579—581(61) 588(61) 683(61) 764
Langevin equation, Brownian motion, research background      277—279
Langevin equation, Brownian motion, theoretical principles      491—493
Langevin equation, dielectric relaxation in cubic potential      440—441
Langevin equation, differential-recurrence equations, moment systems, continued fraction technique      304—307
Langevin equation, dynamic Kerr effect, ac field responses      292—293
Langevin equation, inertial effects, dielectric and birefringence relaxation      416—417
Langevin equation, inertial effects, dielectric and birefringence relaxation, dielectric response      428
Langevin equation, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model      418—425
Langevin equation, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      438—439
Langevin equation, Kramers reaction rate theory      493—497
Langevin equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, magnetic relaxation      656—657
Langevin equation, Kramers reaction rate theory, escape rate validity      497—501
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langers' formula      588—593
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of      581—588
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins      594—598
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, drift/diffusion coefficients      512
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, intermediate-to-high damping (IHD) limit      522—531
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, linearized solution      526—527
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      515—516
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551—555
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, single degree of freedom      509—510
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      521—522
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations      612—613
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, adjoint Fokker — Planck operator, differential equation      615—617
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, boundary layer approximation      629—630
Langevin equation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, background      742—743
Langevin equation, Kramers reaction rate theory, rotational Brownian motion      501—504
Langevin equation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      567—569
Langevin equation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      564—566
Langevin equation, orientational relaxation, rotational diffusion model      293—300
Langevin equation, orientational relaxation, Smoluchowski equation      303
Langevin equation, Stratonovich proof      463—465
Langevin equation, superparamagnetic particle relaxation, research background      446—447
Langevin equation, superparamagnetic particle relaxation, strong dc magnetic field      447—450
Langevin, P.      491(13) 521(13) 762
Langford, S.R.      6—7(43—44) 101(43—44) 102—103(43) 104(43—44) 105(43) 118
Lantz, K.O.      84(219) 123
Laplace transform, continued fraction technique, differential-recurrence equations, moment systems      304—307
Laplace transform, dynamic Kerr effect, strong dc electric fields      333—347
Laplace transform, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      352—353
Laplace transform, inertial effects, dielectric and birefringence relaxation, dielectric response      425—428
Laplace transform, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      408—412
Laplace transform, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function      746—749
Laplace transform, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations      750—752
Laplace transform, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      310—317
Laplace transform, nonlinear dielectric and birefringence relaxation, step-on response, high fields, nonpolar molecules      285—286
Laplace transform, nonlinear dielectric and birefringence relaxation, step-on response, high fields, polar molecules      284—285
Laplace transform, nonlinear dielectric and birefringence relaxation, strong dc electric fields      324—330 333—347
Laplace transform, orientational relaxation, rotational diffusion model      298—300
Laplace transform, relaxation time, linear response      466—468
Laplace transform, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      443—446
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory      543—548
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory, Smoluchowski equation      544—549
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory, very high damping regime      543—544
Larmor precession, Kramers reaction rate theory, rotational Brownian motion      502—504
Larmor precession, rotational Brownian motion, Kramers reaction rate theory, single domain ferromagnetic particles      562—566
Larrieu, C.      125
Larsen, D.S.      257(67—68) 261(68) 264—265(67) 272
Larsson, M.      10(63—64 66) 119
Laser assisted surface ion neutralization (LASIN), time-dependent level crossings, nonadiabatic transitions      193—201
Laser fields, time-dependent molecular control      214—229
Laser fields, time-dependent molecular control, exponential nonadiabatic transition      224—229
Laser fields, time-dependent molecular control, Landau — Zener nonadiabatic transition      215—219
Laser fields, time-dependent molecular control, Rosen — Zener nonadiabatic transition      219—224
Laser induced fluorescence (LIF), CIO radicals      72
Laser photoelectron spectroscopy, molecular excited states, ammonia molecules      97—105
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules      9—34
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules, dissociative recombination (DR)      9—11
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules, REMPI-PES, (3 + 1)      23—28
Laser photoelectron spectroscopy, molecular excited states, experimental protocols      8—9
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules      9—34
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, dissociative recombination (DR)      9—11
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, REMPI-PES, (1 + 1')      29—34
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, REMPI-PES, (3 + 1)      12—23
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, $CS_{2}$ Rydberg complexes      83—85
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons      81—97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, carbon dioxide excited states      92—93
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, OCS fragmentation      93—97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, REMPI-PES with $CS_{2}$      97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, structure and properties      81—83
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, vibronic coupline, $N_{2}O$ and $CS_{2}$      86—92
Laser photoelectron spectroscopy, molecular excited states, research background      2—8
Laser photoelectron spectroscopy, molecular excited states, short-lived diatomic radicals      35—81
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules      105—116
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, dimethyl sulfide      113—116
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, methanethiol      108—112
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, thiirane      106—108
Laser photoelectron spectroscopy, short-lived diatomic radicals, CIO radical      70—81
Laser photoelectron spectroscopy, short-lived diatomic radicals, NH radical      59—70
Laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical      35—42
Laser photoelectron spectroscopy, short-lived diatomic radicals, SH radical      42—59
Laser photoelectron spectroscopy, sulfur-containing molecules, dimethyl sulfide      113—116
Laser photoelectron spectroscopy, sulfur-containing molecules, methanethiol      108—112
Laser photoelectron spectroscopy, sulfur-containing molecules, thiirane      106—108
Lassettre, E.N.      86(233) 123
Lassier-Govers, B.      439(116) 480
Lau, A.      266(109—110 112 115—117) 269(112) 273
Launay, F.      93(242 249) 124
Launay, J.M.      162(86) 233
le Fevre, R.J.W.      401(88) 480
Leach, S.      93(241) 124
LeBlanc, F.J.      86(232) 94(232) 123
Leclerc, B.      84(221) 94(254) 123—124
Ledoux, I.      403(94) 480
Lee, L.C.      42(138) 84(207) 121 123
Lee, S.H.      283(34) 403(34) 478
Lee, Y.H.      283(34) 403(34) 478
Lee, Y.T.      71(167 176) 122
Lefebvre, G.      42(134) 121
Lefebvre-Brion, H.      7(57—58) 118 124
Left eigenvector, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit      585 598—600
Legendre polynomials, dynamic Kerr effect, ac field responses      291—293
Legendre polynomials, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, linear response theory      349
Legendre polynomials, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, transient and relaxation times      350—351
Legendre polynomials, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      403—412
Legendre polynomials, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations      749—752
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response      400—401
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      313—317
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules      385—394
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, rigid polar molecules      374—382
Legendre polynomials, nonlinear dielectric and birefringence relaxation      281—283
Legendre polynomials, nonlinear dielectric and birefringence relaxation, high fields, build-up processes      288
Legendre polynomials, nonlinear dielectric and birefringence relaxation, step-on response, nonpolar molecules      285—286
Legendre polynomials, orientational relaxation, rotational diffusion model      298—300
Legendre polynomials, orientational relaxation, Smoluchowski equation      303
Legendre polynomials, perturbation solutions, weak electric field, superimposition on strong dc bias field      361—362
Legendre polynomials, superparamagnetic particle relaxation, uniaxial potential      457—460
Leickman, J.CI.      417(105—106) 422(106) 480
Lemaire, J.-L.      93(243) 124
Lepetit, B.      162(86) 233
Leung, K.P.      251(32—33) 271
Level crossings, nonadiabatic transitions      132—133
Level crossings, nonadiabatic transitions, time-dependent crossings, applications      188—201
Level crossings, nonadiabatic transitions, time-dependent crossings, Demkov — Osherov model      203—201
Level crossings, nonadiabatic transitions, time-dependent crossings, Nikitin's model      201—203
Level crossings, nonadiabatic transitions, time-dependent crossings, quadratic model solutions      182—188
Lew, H.      59(152) 121
Li, G.      245(17) 271
Li, L.      84(223—224) 123
Li, W.-X.      245(20) 260(20 94—95) 271 273
Li, X.      99—100(275—276) 125
Liao, C.L.      43(143) 121
Librational motion, Kramers reaction rate theory, escape rate validity      501
Lifchitz, E.      301(60) 479
Lin, S.H.      3(5) 117
Line integral denominator, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression      619—620
Linear molecules, dielectric relaxation in cubic potential      439—441
Linear response theory, dielectric relaxation in cubic potential      440—441
Linear response theory, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      347—349
Linear response theory, inertial effects, dielectric and birefringence relaxation      416—439
Linear response theory, inertial effects, dielectric and birefringence relaxation, free rotation equation of motion      419—425
Linear response theory, inertial effects, dielectric and birefringence relaxation, general equations      417—419
Linear response theory, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      436—439
Linear response theory, Kerr effect relaxation, inertial effects, dielectric and birefringence relaxation      428—429 469—472
Linear response theory, Kerr effect relaxation, linear ac response and after effect solution      412—416
Linear response theory, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      307—317
Linear response theory, relaxation time integral expression      465—468
Linear response theory, rotational diffusion, mean field potential, complex susceptibility of matrix continued fractions      442—446
Linear response theory, superparamagnetic particle relaxation, uniaxial potential      459—460
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy      81—97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, $CS_{2}$ Rydberg complexes      83—85
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, carbon dioxide excited states      92—93
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, OCS fragmentation      93—97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, REMPI-PES with $CS_{2}$      97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, structure and properties      81—83
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, vibronic couplinc, $N_{2}O$ and $CS_{2}$      86—92
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory      522—531
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, linearized solution      524—527
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, potential barrier summit, linearization near      523—524
Lionti, F.      674(85) 741(85) 764
Liouville equation, Kramers reaction rate theory, escape rate validity      501
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation      505—508
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, intuitive derivation, heat bath effects      510—511
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, reduction and generalization      508—509
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, small viscosity model, energy-phase variables      533—535
Liouville equation, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution      517—520
Liouville equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551
Liouville equation, Kramers reaction rate theory, Langevin/Fokker — Planck equations      494—497
Liquid molecules, Raman-echo spectroscopy      251—256
Little, N.      99(278) 101(278) 125
Littman, M.G.      182(96) 233
Litvak, M.M.      42(136) 59(148) 121
Livingston, J.D.      446(124) 481
Llewellyn, E.J.      35(111) 120
Lochschmidt, A.      84(208) 123
Lock, M.      59(154) 121
Loewenschluss, A.      71(178) 122
Loiseau, A.      626(77) 764
Long, B.H.      35(111) 120
Lorentzian behavior, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields      343—347
Lotshaw, W.T.      246(23—24) 257(55—57 71) 271—272
Lotz, M.      84(222) 123
Loughnane, B.J.      246—247(22) 257(22 53—54) 271—272
Lovas, F.J.      71—72(181) 78(181) 122
Low-damping (LD) regime, Kramers reaction rate theory, escape rate validity      500—501
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations      610—626
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, adjoint Fokker — Planck operator and differential equation      613—617
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, boundary layer approximation      629—630
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, boundary layer derivation and solution      630—631
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, line integral, Stokes' expression      619—620
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, line integral, Stokes' expression, derivation      627—628
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, stretching transformation      620—623
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, uniform asymptotic expression      617—619
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, weak transverse field rate, evaluation      624—625
Low-damping (LD) regime, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model      531
Low-damping (LD) regime, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, range of validity alternative      556—561
Low-frequency Raman scattering, coherent anti-Stokes Raman scattering (CARS), inter-molecular vibrations      244—246
Ludewig, H.G.      266(109) 273
Luke, Y.      172(95) 233
Lynch, D.L.      15(90) 17(90) 21(90) 120
M diffusion model, inertial effects, dielectric and birefringence relaxation      417
Ma, A.      264(99) 273
Maclaurin series, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, asymptotic expansion      724—725
MacRobert, T.M.      749(91) 752(91) 765
Madden, P.A.      245(21) 271
Magnetic relaxation, Kramers reaction rate theory, crossover between IHD/VLD regimes      656—657
Magnetic relaxation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit      580—581
Magnetic relaxation, Kramers reaction rate theory, single domain ferromagnetic particles, rotational Brownian motion      561—566
Magnetic spins, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit      593—598
Magnetic spins, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT)      622—623
Magnetocrystalline anisotropy, Kramers reaction rate theory, rotational Brownian motion, axial symmetry      570—575
Mailly, D.      626(77—78) 764
Mainfray, G.      10(78) 119
Maki, A.G.      71—72(181) 78(181) 122
Malakhov, A.N.      745(104) 760(103—105) 765
Malm, D.N.      84(210—211) 123
Mannervik, S.      10(63—64) 119
Manopoulos, D.E.      162(86) 233
Manus, C.      10(78) 119
Many-body polarizability, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      244—246
Marchesoni, f.      374(81) 396(81) 399(81) 401(81) 479 761—762(97) 765
Marcus, P.      59(157) 121
Marcus, R.A.      486(3) 494(3) 762
Margolis, J.S.      71(180) 122
Marichev, O.I.      757(92) 765
Maripuu, R.      84(205) 123
Markov process, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      565—566
Martin, A.J.      439(114) 480
Maslov, V.P.      162(85) 233
Masnou-Seeuws, F.      42(134) 121
Massawe, E.S.      288(40) 437(40) 478 571(54) 753(54) 755(54) 763
Mataga, N.      132(50) 232
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå