Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Kramers reaction rate theory, trapped particles, proof of 608—610
Kramers — Moyal expansion, Kramers reaction rate theory, Langevin/Fokker — Planck equations 495—497
Kramers, H.A. 435—436(112) 439—440(112) 480 487—489(4) 491(1) 494(4) 497(4) 505(4) 509(4) 512(4) 516—517(4) 520(4) 524(4) 541(4) 549(4) 588(4) 611—613(4) 637(4) 762
Krauss, M.J. 158(83) 233
Kreher, C.J. 71(172) 122
Kronecker's delta, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 567—569
Kronecker's delta, orientational relaxation, rotational diffusion model 294—300
Krook, M. 417(98) 480
Kruit, P. 5(15) 8(15) 117
Kubo line shape theory, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations 241—243
Kubo line shape theory, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 309—317
Kubo line shape theory, overtone dephasing spectroscopy 267—269
Kubo, O. 626(77) 764
Kubo, R. 241(9) 267(9) 270 307(61) 309(61) 479
Kuijt, J. 6(42) 82—83(42) 86—88(42) 118
Kummer's function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, uniaxial anisotropy 753—758
Kummrow, A. 266(109—110 115 117) 273
Kunike, M. 131(36) 203(36) 231
Kupperman, A. 162(86) 230(102) 233
Kurnit, N.A. 246(26) 271
Kus, M. 133(58) 232
Kutina, R.E. 109(295) 125
Kuyatt, C.E. 86(234) 124
L'Hopital's rule, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation 636—637
Lagrange — Sylvester formula, molecular control, time-dependent external fields 209—214
Lame's equation, inertial effects, dielectric and birefringence relaxation, free rotational motion 422—425
Lampert, A. 10(62) 119
Landau — Lifshitz equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 676—681
Landau — Lifshitz equation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, boundary layer approximation 629—630
Landau — Lifshitz equation, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation 575—578
Landau — Lifshitz equation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 563—566
Landau — Zener model, level crossings, nonadiabatic transitions, time-dependence 182—188
Landau — Zener model, nonadiabatic transition, time-dependent molecular control 215—219
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, complete solutions 139—146
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, limits of 128—129
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes 152—153
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes, adiabatic potentials, higher energies than 155—156
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, multichannel processes, adiabatic potentials, lower energies than 156—159
Landau — Zener model, two-state curve crossing, nonadiabatic transitions, research background 134
Landau — Zener — Stueckelberg problems, time-dependent molecular control 215—219
Landau — Zener — Stueckelberg problems, time-dependent molecular control, exponential potential models 224—229
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, complete solutions 134—151
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, historical background 133—134
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, Landau — Zener case 142—146
Landau — Zener — Stueckelberg problems, two-state nonadiabatic transition curve crossings, tunneling case 146—151
Landau, L.D. 128—129(1) 133(1) 230 301(60) 479
Landauer, R. 133(61—62) 182(61—62) 232 579(71) 581(71) 764
Lane, C.K. 36(122) 120
Lang, M.J. 257(67—69) 261(68—69) 264—265(67) 272
Lange, M. 10(60) 19(60) 21(60) 119
Langelaar, J. 251(34—35) 271
Langer formalism, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 682—690
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, background 579—581
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers formula in context of 589—593
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 593—598
Langer formalism, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, principles 581—588
Langer formalism, Kramers reaction rate theory, Klein — Kramers equation, linearized solution 525—527
Langer, J.S. 489(61) 498(61) 570(61) 579—581(61) 588(61) 683(61) 764
Langevin equation, Brownian motion, research background 277—279
Langevin equation, Brownian motion, theoretical principles 491—493
Langevin equation, dielectric relaxation in cubic potential 440—441
Langevin equation, differential-recurrence equations, moment systems, continued fraction technique 304—307
Langevin equation, dynamic Kerr effect, ac field responses 292—293
Langevin equation, inertial effects, dielectric and birefringence relaxation 416—417
Langevin equation, inertial effects, dielectric and birefringence relaxation, dielectric response 428
Langevin equation, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model 418—425
Langevin equation, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 438—439
Langevin equation, Kramers reaction rate theory 493—497
Langevin equation, Kramers reaction rate theory, crossover between IHD/VLD regimes, magnetic relaxation 656—657
Langevin equation, Kramers reaction rate theory, escape rate validity 497—501
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langers' formula 588—593
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of 581—588
Langevin equation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 594—598
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, drift/diffusion coefficients 512
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, intermediate-to-high damping (IHD) limit 522—531
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, linearized solution 526—527
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 515—516
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 551—555
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, single degree of freedom 509—510
Langevin equation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 521—522
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations 612—613
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, adjoint Fokker — Planck operator, differential equation 615—617
Langevin equation, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, boundary layer approximation 629—630
Langevin equation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, background 742—743
Langevin equation, Kramers reaction rate theory, rotational Brownian motion 501—504
Langevin equation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 567—569
Langevin equation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 564—566
Langevin equation, orientational relaxation, rotational diffusion model 293—300
Langevin equation, orientational relaxation, Smoluchowski equation 303
Langevin equation, Stratonovich proof 463—465
Langevin equation, superparamagnetic particle relaxation, research background 446—447
Langevin equation, superparamagnetic particle relaxation, strong dc magnetic field 447—450
Langevin, P. 491(13) 521(13) 762
Langford, S.R. 6—7(43—44) 101(43—44) 102—103(43) 104(43—44) 105(43) 118
Lantz, K.O. 84(219) 123
Laplace transform, continued fraction technique, differential-recurrence equations, moment systems 304—307
Laplace transform, dynamic Kerr effect, strong dc electric fields 333—347
Laplace transform, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 352—353
Laplace transform, inertial effects, dielectric and birefringence relaxation, dielectric response 425—428
Laplace transform, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 408—412
Laplace transform, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function 746—749
Laplace transform, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations 750—752
Laplace transform, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 310—317
Laplace transform, nonlinear dielectric and birefringence relaxation, step-on response, high fields, nonpolar molecules 285—286
Laplace transform, nonlinear dielectric and birefringence relaxation, step-on response, high fields, polar molecules 284—285
Laplace transform, nonlinear dielectric and birefringence relaxation, strong dc electric fields 324—330 333—347
Laplace transform, orientational relaxation, rotational diffusion model 298—300
Laplace transform, relaxation time, linear response 466—468
Laplace transform, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 443—446
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory 543—548
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory, Smoluchowski equation 544—549
Large viscosity case, Klein — Kramers equation, Kramers reaction rate theory, very high damping regime 543—544
Larmor precession, Kramers reaction rate theory, rotational Brownian motion 502—504
Larmor precession, rotational Brownian motion, Kramers reaction rate theory, single domain ferromagnetic particles 562—566
Larrieu, C. 125
Larsen, D.S. 257(67—68) 261(68) 264—265(67) 272
Larsson, M. 10(63—64 66) 119
Laser assisted surface ion neutralization (LASIN), time-dependent level crossings, nonadiabatic transitions 193—201
Laser fields, time-dependent molecular control 214—229
Laser fields, time-dependent molecular control, exponential nonadiabatic transition 224—229
Laser fields, time-dependent molecular control, Landau — Zener nonadiabatic transition 215—219
Laser fields, time-dependent molecular control, Rosen — Zener nonadiabatic transition 219—224
Laser induced fluorescence (LIF), CIO radicals 72
Laser photoelectron spectroscopy, molecular excited states, ammonia molecules 97—105
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules 9—34
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules, dissociative recombination (DR) 9—11
Laser photoelectron spectroscopy, molecular excited states, deuterium molecules, REMPI-PES, (3 + 1) 23—28
Laser photoelectron spectroscopy, molecular excited states, experimental protocols 8—9
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules 9—34
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, dissociative recombination (DR) 9—11
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, REMPI-PES, (1 + 1') 29—34
Laser photoelectron spectroscopy, molecular excited states, hydrogen molecules, REMPI-PES, (3 + 1) 12—23
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, Rydberg complexes 83—85
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, 16-valence electrons 81—97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, carbon dioxide excited states 92—93
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, OCS fragmentation 93—97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, REMPI-PES with 97
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, structure and properties 81—83
Laser photoelectron spectroscopy, molecular excited states, linear three-atomic molecules, vibronic coupline, and 86—92
Laser photoelectron spectroscopy, molecular excited states, research background 2—8
Laser photoelectron spectroscopy, molecular excited states, short-lived diatomic radicals 35—81
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules 105—116
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, dimethyl sulfide 113—116
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, methanethiol 108—112
Laser photoelectron spectroscopy, molecular excited states, sulfur-containing molecules, thiirane 106—108
Laser photoelectron spectroscopy, short-lived diatomic radicals, CIO radical 70—81
Laser photoelectron spectroscopy, short-lived diatomic radicals, NH radical 59—70
Laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical 35—42
Laser photoelectron spectroscopy, short-lived diatomic radicals, SH radical 42—59
Laser photoelectron spectroscopy, sulfur-containing molecules, dimethyl sulfide 113—116
Laser photoelectron spectroscopy, sulfur-containing molecules, methanethiol 108—112
Laser photoelectron spectroscopy, sulfur-containing molecules, thiirane 106—108
Lassettre, E.N. 86(233) 123
Lassier-Govers, B. 439(116) 480
Lau, A. 266(109—110 112 115—117) 269(112) 273
Launay, F. 93(242 249) 124
Launay, J.M. 162(86) 233
le Fevre, R.J.W. 401(88) 480
Leach, S. 93(241) 124
LeBlanc, F.J. 86(232) 94(232) 123
Leclerc, B. 84(221) 94(254) 123—124
Ledoux, I. 403(94) 480
Lee, L.C. 42(138) 84(207) 121 123
Lee, S.H. 283(34) 403(34) 478
Lee, Y.H. 283(34) 403(34) 478
Lee, Y.T. 71(167 176) 122
Lefebvre, G. 42(134) 121
Lefebvre-Brion, H. 7(57—58) 118 124
Left eigenvector, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit 585 598—600
Legendre polynomials, dynamic Kerr effect, ac field responses 291—293
Legendre polynomials, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, linear response theory 349
Legendre polynomials, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, transient and relaxation times 350—351
Legendre polynomials, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 403—412
Legendre polynomials, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations 749—752
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response 400—401
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 313—317
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules 385—394
Legendre polynomials, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, rigid polar molecules 374—382
Legendre polynomials, nonlinear dielectric and birefringence relaxation 281—283
Legendre polynomials, nonlinear dielectric and birefringence relaxation, high fields, build-up processes 288
Legendre polynomials, nonlinear dielectric and birefringence relaxation, step-on response, nonpolar molecules 285—286
Legendre polynomials, orientational relaxation, rotational diffusion model 298—300
Legendre polynomials, orientational relaxation, Smoluchowski equation 303
Legendre polynomials, perturbation solutions, weak electric field, superimposition on strong dc bias field 361—362
Legendre polynomials, superparamagnetic particle relaxation, uniaxial potential 457—460
Leickman, J.CI. 417(105—106) 422(106) 480
Lemaire, J.-L. 93(243) 124
Lepetit, B. 162(86) 233
Leung, K.P. 251(32—33) 271
Level crossings, nonadiabatic transitions 132—133
Level crossings, nonadiabatic transitions, time-dependent crossings, applications 188—201
Level crossings, nonadiabatic transitions, time-dependent crossings, Demkov — Osherov model 203—201
Level crossings, nonadiabatic transitions, time-dependent crossings, Nikitin's model 201—203
Level crossings, nonadiabatic transitions, time-dependent crossings, quadratic model solutions 182—188
Lew, H. 59(152) 121
Li, G. 245(17) 271
Li, L. 84(223—224) 123
Li, W.-X. 245(20) 260(20 94—95) 271 273
Li, X. 99—100(275—276) 125
Liao, C.L. 43(143) 121
Librational motion, Kramers reaction rate theory, escape rate validity 501
Lifchitz, E. 301(60) 479
Lin, S.H. 3(5) 117
Line integral denominator, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression 619—620
Linear molecules, dielectric relaxation in cubic potential 439—441
Linear response theory, dielectric relaxation in cubic potential 440—441
Linear response theory, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 347—349
Linear response theory, inertial effects, dielectric and birefringence relaxation 416—439
Linear response theory, inertial effects, dielectric and birefringence relaxation, free rotation equation of motion 419—425
Linear response theory, inertial effects, dielectric and birefringence relaxation, general equations 417—419
Linear response theory, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 436—439
Linear response theory, Kerr effect relaxation, inertial effects, dielectric and birefringence relaxation 428—429 469—472
Linear response theory, Kerr effect relaxation, linear ac response and after effect solution 412—416
Linear response theory, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 307—317
Linear response theory, relaxation time integral expression 465—468
Linear response theory, rotational diffusion, mean field potential, complex susceptibility of matrix continued fractions 442—446
Linear response theory, superparamagnetic particle relaxation, uniaxial potential 459—460
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy 81—97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, Rydberg complexes 83—85
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, carbon dioxide excited states 92—93
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, OCS fragmentation 93—97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, REMPI-PES with 97
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, structure and properties 81—83
Linear three-atomic molecules, 16-valence electrons, laser photoelectron spectroscopy, vibronic couplinc, and 86—92
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory 522—531
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, linearized solution 524—527
Linearized Klein — Kramers equation, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, potential barrier summit, linearization near 523—524
Lionti, F. 674(85) 741(85) 764
Liouville equation, Kramers reaction rate theory, escape rate validity 501
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation 505—508
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, intuitive derivation, heat bath effects 510—511
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, reduction and generalization 508—509
Liouville equation, Kramers reaction rate theory, Klein — Kramers derivation, small viscosity model, energy-phase variables 533—535
Liouville equation, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 517—520
Liouville equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 551
Liouville equation, Kramers reaction rate theory, Langevin/Fokker — Planck equations 494—497
Liquid molecules, Raman-echo spectroscopy 251—256
Little, N. 99(278) 101(278) 125
Littman, M.G. 182(96) 233
Litvak, M.M. 42(136) 59(148) 121
Livingston, J.D. 446(124) 481
Llewellyn, E.J. 35(111) 120
Lochschmidt, A. 84(208) 123
Lock, M. 59(154) 121
Loewenschluss, A. 71(178) 122
Loiseau, A. 626(77) 764
Long, B.H. 35(111) 120
Lorentzian behavior, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields 343—347
Lotshaw, W.T. 246(23—24) 257(55—57 71) 271—272
Lotz, M. 84(222) 123
Loughnane, B.J. 246—247(22) 257(22 53—54) 271—272
Lovas, F.J. 71—72(181) 78(181) 122
Low-damping (LD) regime, Kramers reaction rate theory, escape rate validity 500—501
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations 610—626
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, adjoint Fokker — Planck operator and differential equation 613—617
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, boundary layer approximation 629—630
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, boundary layer derivation and solution 630—631
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, line integral, Stokes' expression 619—620
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, line integral, Stokes' expression, derivation 627—628
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, stretching transformation 620—623
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, uniform asymptotic expression 617—619
Low-damping (LD) regime, Kramers reaction rate theory, first passage time escape rate calculations, weak transverse field rate, evaluation 624—625
Low-damping (LD) regime, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model 531
Low-damping (LD) regime, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, range of validity alternative 556—561
Low-frequency Raman scattering, coherent anti-Stokes Raman scattering (CARS), inter-molecular vibrations 244—246
Ludewig, H.G. 266(109) 273
Luke, Y. 172(95) 233
Lynch, D.L. 15(90) 17(90) 21(90) 120
M diffusion model, inertial effects, dielectric and birefringence relaxation 417
Ma, A. 264(99) 273
Maclaurin series, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, asymptotic expansion 724—725
MacRobert, T.M. 749(91) 752(91) 765
Madden, P.A. 245(21) 271
Magnetic relaxation, Kramers reaction rate theory, crossover between IHD/VLD regimes 656—657
Magnetic relaxation, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit 580—581
Magnetic relaxation, Kramers reaction rate theory, single domain ferromagnetic particles, rotational Brownian motion 561—566
Magnetic spins, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit 593—598
Magnetic spins, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation, mean first passage times (MFPT) 622—623
Magnetocrystalline anisotropy, Kramers reaction rate theory, rotational Brownian motion, axial symmetry 570—575
Mailly, D. 626(77—78) 764
Mainfray, G. 10(78) 119
Maki, A.G. 71—72(181) 78(181) 122
Malakhov, A.N. 745(104) 760(103—105) 765
Malm, D.N. 84(210—211) 123
Mannervik, S. 10(63—64) 119
Manopoulos, D.E. 162(86) 233
Manus, C. 10(78) 119
Many-body polarizability, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations 244—246
Marchesoni, f. 374(81) 396(81) 399(81) 401(81) 479 761—762(97) 765
Marcus, P. 59(157) 121
Marcus, R.A. 486(3) 494(3) 762
Margolis, J.S. 71(180) 122
Marichev, O.I. 757(92) 765
Maripuu, R. 84(205) 123
Markov process, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 565—566
Martin, A.J. 439(114) 480
Maslov, V.P. 162(85) 233
Masnou-Seeuws, F. 42(134) 121
Massawe, E.S. 288(40) 437(40) 478 571(54) 753(54) 755(54) 763
Mataga, N. 132(50) 232
Ðåêëàìà