Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Matkowsky, B.J. 542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763
Matrix continued fractions, birefringence and dielectric relaxation, strengths of 460—462
Matrix continued fractions, Brownian motion, research background 278—279
Matrix continued fractions, differential-recurrence equations, moment systems 303—307
Matrix continued fractions, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 353—354
Matrix continued fractions, Kerr effect relaxation, molecular hyperpolarizability, linear ac response and after effect solution 413—416
Matrix continued fractions, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 403—412
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, integral relaxation time 578—579
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation 578
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particle relaxation 566
Matrix continued fractions, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules 389—394
Matrix continued fractions, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, rigid polar molecules 376—382
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, equilibrium and first-order solutions 362—364
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, second-order solutions 365—368
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, strong dc magnetic fields 321—330
Matrix continued fractions, nonlinear dielectric and Kerr effect relaxation, strong dc magnetic fields 333—347
Matrix continued fractions, rotational diffusion, mean field potential, complex susceptibility 442—446 473—477
Matsumi, Y. 72(192) 96—97(260) 122 124
Matsumoto, K. 462(138) 481
Matsumoto, M. 282—283(17) 462(17) 478
Matsunaga, F.M. 94(253) 124
Mattson, L. 84(205) 123 125
Maxwell — Boltzmann distribution function, Brownian motion principles 490—493
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 681
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 638—639
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function 640—646
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, escape rate validity 498—501
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime 496—497
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of 582—588
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation 555
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, linearized solution 524—527
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 518—520
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 550—551
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 529—531
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, Smoluchowski equation, alternative derivation 555—556
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function 746—749
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression 744—745
Maxwell — Boltzmann distribution function, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 312—317
Maxwell — Boltzmann distribution function, reaction rate theory 488—490
Maxwellian distribution, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 520—522
McCarthy, D.J. 541(45) 610(45) 656(84) 694(45) 706(84) 761(84) 763—764
McClain, W.M. 108(291) 125
McClung, R.E.D. 278(10) 416—417(10) 477
McConnell, J.R. 277(1) 279(1) 293—294(1) 416(1) 439(1) 477 569(53) 761(53) 763
McCormack, E.F. 10(84) 21(84) 119
McDiarmid, R. 84(218) 113—114(300) 123 125
McDonald, J.M. 84(216) 93—94(216) 123
McGee, R.X. 35(115) 120
McGlynn, S.P. 84(216) 93—94(216) 123
McKoy, B.V. 5(21) 7(51—52 54 56—57) 10(90) 17(90) 21(90) 38(51 126—127) 40(51 127—129) 42(128—129 132—133) 48(51—52 54 56 146) 49(54) 51(54) 56(54) 62(160) 66—70(56) 117—118 120—122
McLendon, G. 132(50) 232
McMorrow, D. 246(23—24) 257(55—57) 271—272
McTague, J.P. 245(15) 271
Mean field potential, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 513—516
Mean field potential, rotational diffusion, cubic potential molecules 439—441
Mean field potential, rotational diffusion, matrix continued fractions, complex susceptibility 442—446
Mean field potential, superparamagnetic particle relaxation 446—460
Mean field potential, superparamagnetic particle relaxation, strong dc electric field, Langevin equation 447—450
Mean field potential, superparamagnetic particle relaxation, transient linear reponse 450—456
Mean field potential, superparamagnetic particle relaxation, uniaxial particles, ac/dc/ bias magnetic fields 456—459
Mean first passage times (MFPT), Kramers reaction rate theory 504—505
Mean first passage times (MFPT), Kramers reaction rate theory, Klein — Kramers equation, small viscosity model 542—543
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations 611—613
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, adjoint Fokker — Planck operator, differential equation 613—617
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression 619—620
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation 620—623
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, uniform asymptotic method 617—619
Mean first passage times (MFPT), Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression 743—745
Mean first passage times (MFPT), Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 571—575
Mean first passage times (MFPT), Kramers reaction rate theory, rotational Brownian motion, escape rate calculations 575—578
Mean-square displacement, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 639
Mean-square displacement, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 513—516
Mean-square displacement, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 521—522
Meeks, M.L. 42(136) 121
Meier, G. 439(114) 480
Meinders, N.A.C.M. 257(58) 272
Mel'nikov, V.I. 489(34) 496(34) 501(34) 550(34 49) 557(34 49) 560(34 49) 632(34) 634(34) 636(34) 656(34 49) 675(34) 679(34) 690(34) 761(34 49) 763
Melinger, J.S. 257(55 57) 272
Memory function, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model 418—425
Menzies, R.T. 71(180) 122
Merer, A.J. 84(210—212) 123
Meshkov, S.V. 489(34) 496(34) 501(34) 550(34) 557(34) 560(34) 632(34) 634(34) 636(34) 656(34) 675(34) 679(34) 690(34) 761(34) 763
Metastable states, Kramers reaction rate theory, crossover between IHD/VLD regimes, decay rate 655—656
Methanethiol, laser photoelectron spectroscopy 108—112
Michel, K.A. 439—440(117) 480
Mielczarek, S.R. 86(234) 124
Migus, A. 403(94) 480
Mikkelsen, K.V. 486(2) 538(2) 762
Milan, J.B. 5(18) 6(36—37 40) 7(18 36—37 47—48 50 52—54) 8(18) 43(40 53 140) 44(40) 46—47(40) 48(52 54) 49(54) 51(54) 52—54(140) 55(53 140) 56(40 52—54 140) 58—59(40) 81(48 50) 82(48) 83(48 50) 85(48) 90—91(50) 92(48) 96(50) 97(48 50) 99(50) 106—108(47) 114(47) 117—118 121
Miller, J.C. 3(11) 71(178) 117 122
Miller, P.J. 100—101(281) 125
Miller, R.J.D. 257(71) 272
Miller, W.H. 131(28) 162(85) 168(28) 230(28) 231 233
Milne, C.J. 40(130) 121
Mohanty, U. 254(45) 271
Molecular chaos, Brownian motion principles 490—493
Molecular control, time-dependent external fields, exponential nonadiabatic transition 224—229
Molecular control, time-dependent external fields, Landau — Zener nonadiabiatic transition 215—219
Molecular control, time-dependent external fields, laser field control 214—229
Molecular control, time-dependent external fields, Rosen — Zener nonadiabiatic transition 219—224
Molecular control, time-dependent external fields, theoretical background 206—214
Molecular dynamics, fifth-order Raman spectroscopy, intramolecular vibrations 264
Molecular excited states, laser photoelectron spectroscopy, ammonia molecules 97—105
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules 9—34
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules, dissociative recombination (DR) 9—11
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules, REMPI-PES, (3 + 1) 23—28
Molecular excited states, laser photoelectron spectroscopy, experimental protocols 8—9
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules 9—34
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, dissociative recombination (DR) 9—11
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, REMPI-PES, (1 + 1') 29—34
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, REMPI-PES, (3 + 1) 12—23
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons 81—97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, Rydberg complexes 83—85
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, carbon dioxide excited states 92—93
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, OCS fragmentation 93—97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, REMPI-PES with 97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, structure and properties 81—83
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, vibronic couplinc, and 86—92
Molecular excited states, laser photoelectron spectroscopy, research background 2—8
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals 35—81
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, CIO radical 70—81
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, NH radical 59—70
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical 35—42
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, SH radical 42—59
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules 105—116
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, dimethyl sulfide 113—116
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, methanethiol 108—112
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, thiirane 106—108
Molecular polarizability tensor, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations 240—243
Molecular polarizability tensor, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields 330—347
Molina, M.J. 71(165) 122
Moment systems, differential-recurrence equations, continued fraction approach 303—307
Moment systems, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 351—353
Moment systems, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation 355—356
Moment systems, Kerr effect relaxation, hyperpolarizability tensors 401—412
Moment systems, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 513—516
Moment systems, nonlinear dielectric and birefringence relaxation, second-order perturbation, solutions 367—368
Moment systems, nonlinear dielectric/dynamic Kerr relaxation, step-on response, induced dipole effect 336—340
Moment systems, nonlinear dielectric/dynamic Kerr relaxation, step-on response, permanent dipole effect 340—343
Momentum changes, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 513—516
Moore, C.E. 31(102) 120
Morais, J. 269(123) 274
Mordaunt, D.H. 99(272—273) 125
Morellec, J. 10(77—78) 119
Morgan, R.A. 6(43—46) 7(43—44 47—50) 81—83(48—50) 85(48) 89(46) 90—91(50) 92(48) 94(49) 96(50) 97(48—50) 99(50) 101(43—44) 102—103(43) 104(43—44) 105(43) 106—108(47) 109(45) 111(45) 113(46) 114(46—47) 116(46) 118
Mori — Zwanzig memory function technique, inertial effects, dielectric and birefringence relaxation 417
Morino, Y. 71(189) 122
Morita, A. 277—278(2) 281(2) 282(2 25—26) 283(2 25—26 29 37) 284—286(2) 288(2 29) 289(25) 292(26) 293(2) 309(29 37) 317(2) 326(2) 336(2) 339(2) 342(2) 361(2) 477—478
Moro, G. 309(63) 439(118) 479—480
Morris, A. 43(141—142) 71(166) 74(166) 76(200) 81(166) 121—123
Morris, S.A. 84(212) 123
Morrow, B. 43(144) 121
Morse potentials, nonadiabatic transitions, curve crossings, multichannel processes 159—161
Morse, P.M. 732(81) 638—639(81) 644—645(81) 764
Morse, R.D. 72—74(196) 106—108(288) 122 125
Mossberg, T.W. 251(32—33) 260(93) 271 273
Motion equations, inertial effects, dielectric and birefringence relaxation, free rotational motion 419—425
Motion equations, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 433—439
Mouflih, B. 125
Mowat, J.R. 10(63) 119
Mueller-Dethlefs, K. 5(19—21) 84(208) 99(271—272) 117 123 125
Mukamel, S. 237(7) 257(59 67/71—72 74) 264—265(67) 270 272
Mullen, K. 133(66) 182(66) 232
Muller, L.J. 250(30) 252(30 37) 253(37) 254(30) 256(30) 271
Muller, M. 252(36) 271
Mulligan, B. 277(6) 446(6) 451(6) 454(6) 477 504(65) 579(65) 584(65) 693(65) 697—698(65) 682—684(65) 686(65) 704(65) 709(65) 764
Multichannel processes, nonadiabatic transitions, curve crossings 152—161
Multichannel processes, nonadiabatic transitions, curve crossings, energies greater than adiabatic channel 155—156
Multichannel processes, nonadiabatic transitions, curve crossings, energies lower than adiabatic channel 156—159
Multichannel processes, nonadiabatic transitions, curve crossings, numerical applications 159—161
Multichannel processes, nonadiabatic transitions, curve crossings, open channel cases 153—155
Multichannel processes, nonadiabatic transitions, curve crossings, research background 130
Multichannel processes, noncurve crossing, nonadiabatic transitions, attractive potential model 178—181
Multichannel processes, time-dependent level crossings, nonadiabatic transitions 197—201
Multidimensional problems, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit 579—581
Multidimensional problems, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of 585—588
Multidimensional problems, molecular control, time-dependent external fields 211—214
Multidimensional problems, nonadiabatic transitions, curve crossings, research background 130
Multidimensional problems, nonadiabatic transitions, curve crossings, two-state theory 161—168
Multidimensional problems, time-dependent level crossings, nonadiabatic transitions 197—201
Multidimensional Raman spectroscopy see "Raman spectroscopy"
Multiphoton absorption, laser photoelectron spectroscopy, molecular excitation 6—8
Multiphoton ionization, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules 24—25
Multiplet-specific potentials, laser photoelectron spectroscopy, OH radicals 40—42
Multiplicative noise, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit 579—581
Multirefernce singldl/double excitation configuration interaction (MRD-CI), NH radical spectroscopy 60—61
Murry, R.L. 245(20) 257(85—86) 258(85) 260(20 85 94—95) 269(85) 271 273
Nagasawa, Y. 236(5) 270
Naitoh, Y. 252(40) 257(61) 261(61) 271—272
Nakamura, H. 128(8) 129(12—23) 130(21—26) 131 38 44 46—47) 132(52) 133(69) 134(8) 137(13 76—78) 138(17) 140(13) 141(13 19) 142(18) 143(18—19) 146(18—19) 152(24—25 79—80) 156(8 80) 159—160(25) 162(89—90) 163(26 89—90) 164(89) 165(26 91) 166(26) 170—171(31—32 34) 178(31) 181(31 34) 182(44) 186(13 22) 188(13) 192(17—18 44) 193(52) 196(52) 198(24—25) 205(38) 206(46—47) 212(44) 224(32) 230—233
Nakano, T. 282(21) 289(21) 462(21) 478
Namioka, T. 12(88) 119
Nanbu, S. 232
Narasimhan, L.R. 246(27) 271
Nasu, K. 132(55) 232
Nee, J.B. 79(201) 123
Neel relaxation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function 746—749
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion 501—504
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 566—569
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 561—566
Neel, L. 446(125) 481 501—502(37) 561(37) 763
Nelson, K.A. 252(38—40) 254(45) 257(50—52) 271—272
Neusser, H.J. 3(5) 117
Newtonian equation, Kramers reaction rate theory, Klein — Kramers equation, Kramers' derivation 512—513
Newtonian equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes 551—555
Ng, C.U. 43(143) 121
Ng, C.Y. 94(250) 124
Ng, T.L. 36(124) 120
Ngai, K.L. 245(18) 271
NH radical, laser photoelectron spectroscopy, state 61—62
NH radical, laser photoelectron spectroscopy, state 62—66
NH radical, laser photoelectron spectroscopy, (2 + 1) REMPI process 59—61
NH radical, laser photoelectron spectroscopy, diatomic radicals 59—70
NH radical, laser photoelectron spectroscopy, rotationally resolved photoelectron spectroscopy 66—70
Niedner-Schatteburg, G. 84(208) 123
Nieman, G.C. 99(266—269) 100(268—269) 124—125
Nikitin model, nonadiabatic transitions, noncurve crossings 169—172
Nikitin model, noncurve crossing, nonadiabatic transitions, repulsive potential model 177—178
Nikitin model, time-dependent level crossings, nonadiabatic transitions 201—206
Nikitin, E.E. 128(6 11) 133(70) 134(11) 169(6) 171(6) 177(6) 201(6) 224(6) 230—232
Nilgens, H. 245(16) 271
Nishimura, Y. 84(206) 123
Nobusada, K. 130(26) 162(90) 163(26 90) 165(26 91) 166(26) 231 233
Noda, K. 10(61) 119
Nogues, M. 674(86) 764
Nohre, C. 84(205) 123
Noisy light, fifth-order Raman spectroscopy 266
Nonadiabatic transitions, curve crossings, future research issues 229—230
Nonadiabatic transitions, curve crossings, limitations of 181—182
Nonadiabatic transitions, curve crossings, multichannel processes 152—161
Nonadiabatic transitions, curve crossings, multichannel processes, energies greater than adiabatic channel 155—156
Nonadiabatic transitions, curve crossings, multichannel processes, energies lower than adiabatic channel 156—159
Nonadiabatic transitions, curve crossings, multichannel processes, numerical applications 159—161
Nonadiabatic transitions, curve crossings, multichannel processes, open channel cases 153—155
Nonadiabatic transitions, curve crossings, multidimensional problems 161—168
Nonadiabatic transitions, curve crossings, research background 128—132
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, exponential nonadiabatic transition 224—229
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, Landau — Zener nonadiabiatic transition 215—219
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, laser field control 214—229
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, Rosen — Zener nonadiabiatic transition 219—224
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, theoretical background 206—214
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, complete solutions 134—151
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, historical background 133—134
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, Landau — Zener case 142—146
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, tunneling case 146—151
Nonadiabatic transitions, level crossings 132—133
Nonadiabatic transitions, level crossings, time-dependent crossings, applications 188—201
Nonadiabatic transitions, level crossings, time-dependent crossings, Demkov — Osherov model 203—201
Nonadiabatic transitions, level crossings, time-dependent crossings, Nikitin's model 201—203
Nonadiabatic transitions, level crossings, time-dependent crossings, quadratic solutions 182—188
Nonadiabatic transitions, noncurve crossings, attractive exponential potential models 178—181
Nonadiabatic transitions, noncurve crossings, exponential potential models 169—172
Nonadiabatic transitions, noncurve crossings, repulsive exponential potential models 175—178
Nonadiabatic transitions, noncurve crossings, Rosen — Zener — Demkov models 172—175
Nonadiabatic transitions, noncurve crossings, threshold effects 181—182
Nonadiabatic tunneling, two-state curve crossing 129
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, case study of 146—151
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, complete solutions 134—142
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, WKB wave function 139—142
Nonadiabatic tunneling, two-state curve crossing, multichannel systems, adiabatic potentials, higher energies than 155—156
Nonadiabatic tunneling, two-state curve crossing, multichannel systems, adiabatic potentials, lower energies than 156—159
Nonaxial symmetric potentials, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field 624—625
Nonaxial symmetric potentials, Kramers reaction rate theory, rotational Brownian motion 504
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, calculation principles 715—716
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, crossover function proof 717—718
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, divergence of escape rates 706—709
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, crossover high damping formulas 690—694
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, IHD divergence for small departures 681—690
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, notation 675—681
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, theoretical background 674—675
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, VLD limit applications 694—706
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, kinetic equation derivations 710—712
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, partition function, steepest descent evaluation 712—715
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, energy diffusion method 695—698
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial perturbations 703—706 725—740
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial/LD crossovers 698—703 718—725
Noncurve crossings, nonadiabatic transitions, attractive model 178—181
Noncurve crossings, nonadiabatic transitions, background 169
Noncurve crossings, nonadiabatic transitions, exponential potential model 169—172
Noncurve crossings, nonadiabatic transitions, repulsive model 175—178
Noncurve crossings, nonadiabatic transitions, Rosen — Zener — Demkov model 172—175
Noncurve crossings, nonadiabatic transitions, threshold effect 181—182
Noninertial Fokker — Planck equation see "Smoluchowski equation"
Nonlinear dielectric relaxation, ac field responses 289—293
Nonlinear dielectric relaxation, ac field responses, dielectric response 289—291
Nonlinear dielectric relaxation, ac field responses, Kerr effect response 291—293
Nonlinear dielectric relaxation, arbitrary strength as factor 461—462
Nonlinear dielectric relaxation, historical background 293
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response 416—425
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response, extended rotational diffusion model 417—425
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response, Kerr effect responses 425—439
Nonlinear dielectric relaxation, strong dc electric field, exact solutions 330—347
Nonlinear dielectric relaxation, strong dc electric field, problem formulation and solution 317—330
Nonlinear dielectric relaxation, strong dc electric field, relaxation spectra evaluation 343—347
Nonlinear dielectric relaxation, strong dc electric field, relaxation time/spectra evaluation 340—343
Nonlinear dielectric relaxation, strong dc electric field, step-on response evaluation 336—340
Nonlinear dielectric relaxation, strong electric fields, nonstationary ac response 394—401
Nonlinear dielectric relaxation, strong electric fields, one-dimensional relaxation models 309—317
Nonlinear dielectric relaxation, strong electric fields, polar and polarizable molecules 382—394
Nonlinear dielectric relaxation, strong electric fields, rigid polar molecules 373—382
Ðåêëàìà