Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Matkowsky, B.J.      542—543(44) 610—612(44) 617—618(44) 626(44) 629(44) 763
Matrix continued fractions, birefringence and dielectric relaxation, strengths of      460—462
Matrix continued fractions, Brownian motion, research background      278—279
Matrix continued fractions, differential-recurrence equations, moment systems      303—307
Matrix continued fractions, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      353—354
Matrix continued fractions, Kerr effect relaxation, molecular hyperpolarizability, linear ac response and after effect solution      413—416
Matrix continued fractions, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      403—412
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, integral relaxation time      578—579
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      578
Matrix continued fractions, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particle relaxation      566
Matrix continued fractions, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, polar and polarizable molecules      389—394
Matrix continued fractions, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields, rigid polar molecules      376—382
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, equilibrium and first-order solutions      362—364
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, second-order solutions      365—368
Matrix continued fractions, nonlinear dielectric and birefringence relaxation, perturbation solutions, strong dc magnetic fields      321—330
Matrix continued fractions, nonlinear dielectric and Kerr effect relaxation, strong dc magnetic fields      333—347
Matrix continued fractions, rotational diffusion, mean field potential, complex susceptibility      442—446 473—477
Matsumi, Y.      72(192) 96—97(260) 122 124
Matsumoto, K.      462(138) 481
Matsumoto, M.      282—283(17) 462(17) 478
Matsunaga, F.M.      94(253) 124
Mattson, L.      84(205) 123 125
Maxwell — Boltzmann distribution function, Brownian motion principles      490—493
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      681
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation      638—639
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function      640—646
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, escape rate validity      498—501
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime      496—497
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of      582—588
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, alternative derivation      555
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, linearized solution      524—527
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution      518—520
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      550—551
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations      529—531
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers equation, Smoluchowski equation, alternative derivation      555—556
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function      746—749
Maxwell — Boltzmann distribution function, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression      744—745
Maxwell — Boltzmann distribution function, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      312—317
Maxwell — Boltzmann distribution function, reaction rate theory      488—490
Maxwellian distribution, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      520—522
McCarthy, D.J.      541(45) 610(45) 656(84) 694(45) 706(84) 761(84) 763—764
McClain, W.M.      108(291) 125
McClung, R.E.D.      278(10) 416—417(10) 477
McConnell, J.R.      277(1) 279(1) 293—294(1) 416(1) 439(1) 477 569(53) 761(53) 763
McCormack, E.F.      10(84) 21(84) 119
McDiarmid, R.      84(218) 113—114(300) 123 125
McDonald, J.M.      84(216) 93—94(216) 123
McGee, R.X.      35(115) 120
McGlynn, S.P.      84(216) 93—94(216) 123
McKoy, B.V.      5(21) 7(51—52 54 56—57) 10(90) 17(90) 21(90) 38(51 126—127) 40(51 127—129) 42(128—129 132—133) 48(51—52 54 56 146) 49(54) 51(54) 56(54) 62(160) 66—70(56) 117—118 120—122
McLendon, G.      132(50) 232
McMorrow, D.      246(23—24) 257(55—57) 271—272
McTague, J.P.      245(15) 271
Mean field potential, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      513—516
Mean field potential, rotational diffusion, cubic potential molecules      439—441
Mean field potential, rotational diffusion, matrix continued fractions, complex susceptibility      442—446
Mean field potential, superparamagnetic particle relaxation      446—460
Mean field potential, superparamagnetic particle relaxation, strong dc electric field, Langevin equation      447—450
Mean field potential, superparamagnetic particle relaxation, transient linear reponse      450—456
Mean field potential, superparamagnetic particle relaxation, uniaxial particles, ac/dc/ bias magnetic fields      456—459
Mean first passage times (MFPT), Kramers reaction rate theory      504—505
Mean first passage times (MFPT), Kramers reaction rate theory, Klein — Kramers equation, small viscosity model      542—543
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations      611—613
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, adjoint Fokker — Planck operator, differential equation      613—617
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression      619—620
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, stretching transformation      620—623
Mean first passage times (MFPT), Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, uniform asymptotic method      617—619
Mean first passage times (MFPT), Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression      743—745
Mean first passage times (MFPT), Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy      571—575
Mean first passage times (MFPT), Kramers reaction rate theory, rotational Brownian motion, escape rate calculations      575—578
Mean-square displacement, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation      639
Mean-square displacement, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      513—516
Mean-square displacement, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      521—522
Meeks, M.L.      42(136) 121
Meier, G.      439(114) 480
Meinders, N.A.C.M.      257(58) 272
Mel'nikov, V.I.      489(34) 496(34) 501(34) 550(34 49) 557(34 49) 560(34 49) 632(34) 634(34) 636(34) 656(34 49) 675(34) 679(34) 690(34) 761(34 49) 763
Melinger, J.S.      257(55 57) 272
Memory function, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model      418—425
Menzies, R.T.      71(180) 122
Merer, A.J.      84(210—212) 123
Meshkov, S.V.      489(34) 496(34) 501(34) 550(34) 557(34) 560(34) 632(34) 634(34) 636(34) 656(34) 675(34) 679(34) 690(34) 761(34) 763
Metastable states, Kramers reaction rate theory, crossover between IHD/VLD regimes, decay rate      655—656
Methanethiol, laser photoelectron spectroscopy      108—112
Michel, K.A.      439—440(117) 480
Mielczarek, S.R.      86(234) 124
Migus, A.      403(94) 480
Mikkelsen, K.V.      486(2) 538(2) 762
Milan, J.B.      5(18) 6(36—37 40) 7(18 36—37 47—48 50 52—54) 8(18) 43(40 53 140) 44(40) 46—47(40) 48(52 54) 49(54) 51(54) 52—54(140) 55(53 140) 56(40 52—54 140) 58—59(40) 81(48 50) 82(48) 83(48 50) 85(48) 90—91(50) 92(48) 96(50) 97(48 50) 99(50) 106—108(47) 114(47) 117—118 121
Miller, J.C.      3(11) 71(178) 117 122
Miller, P.J.      100—101(281) 125
Miller, R.J.D.      257(71) 272
Miller, W.H.      131(28) 162(85) 168(28) 230(28) 231 233
Milne, C.J.      40(130) 121
Mohanty, U.      254(45) 271
Molecular chaos, Brownian motion principles      490—493
Molecular control, time-dependent external fields, exponential nonadiabatic transition      224—229
Molecular control, time-dependent external fields, Landau — Zener nonadiabiatic transition      215—219
Molecular control, time-dependent external fields, laser field control      214—229
Molecular control, time-dependent external fields, Rosen — Zener nonadiabiatic transition      219—224
Molecular control, time-dependent external fields, theoretical background      206—214
Molecular dynamics, fifth-order Raman spectroscopy, intramolecular vibrations      264
Molecular excited states, laser photoelectron spectroscopy, ammonia molecules      97—105
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules      9—34
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules, dissociative recombination (DR)      9—11
Molecular excited states, laser photoelectron spectroscopy, deuterium molecules, REMPI-PES, (3 + 1)      23—28
Molecular excited states, laser photoelectron spectroscopy, experimental protocols      8—9
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules      9—34
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, dissociative recombination (DR)      9—11
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, REMPI-PES, (1 + 1')      29—34
Molecular excited states, laser photoelectron spectroscopy, hydrogen molecules, REMPI-PES, (3 + 1)      12—23
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons      81—97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, $CS_{2}$ Rydberg complexes      83—85
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, carbon dioxide excited states      92—93
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, OCS fragmentation      93—97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, REMPI-PES with $CS_{2}$      97
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, structure and properties      81—83
Molecular excited states, laser photoelectron spectroscopy, linear three-atomic molecules 16-valence electrons, vibronic couplinc, $N_{2}O$ and $CS_{2}$      86—92
Molecular excited states, laser photoelectron spectroscopy, research background      2—8
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals      35—81
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, CIO radical      70—81
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, NH radical      59—70
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical      35—42
Molecular excited states, laser photoelectron spectroscopy, short-lived diatomic radicals, SH radical      42—59
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules      105—116
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, dimethyl sulfide      113—116
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, methanethiol      108—112
Molecular excited states, laser photoelectron spectroscopy, sulfur-containing molecules, thiirane      106—108
Molecular polarizability tensor, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      240—243
Molecular polarizability tensor, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields      330—347
Molina, M.J.      71(165) 122
Moment systems, differential-recurrence equations, continued fraction approach      303—307
Moment systems, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      351—353
Moment systems, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation      355—356
Moment systems, Kerr effect relaxation, hyperpolarizability tensors      401—412
Moment systems, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      513—516
Moment systems, nonlinear dielectric and birefringence relaxation, second-order perturbation, solutions      367—368
Moment systems, nonlinear dielectric/dynamic Kerr relaxation, step-on response, induced dipole effect      336—340
Moment systems, nonlinear dielectric/dynamic Kerr relaxation, step-on response, permanent dipole effect      340—343
Momentum changes, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      513—516
Moore, C.E.      31(102) 120
Morais, J.      269(123) 274
Mordaunt, D.H.      99(272—273) 125
Morellec, J.      10(77—78) 119
Morgan, R.A.      6(43—46) 7(43—44 47—50) 81—83(48—50) 85(48) 89(46) 90—91(50) 92(48) 94(49) 96(50) 97(48—50) 99(50) 101(43—44) 102—103(43) 104(43—44) 105(43) 106—108(47) 109(45) 111(45) 113(46) 114(46—47) 116(46) 118
Mori — Zwanzig memory function technique, inertial effects, dielectric and birefringence relaxation      417
Morino, Y.      71(189) 122
Morita, A.      277—278(2) 281(2) 282(2 25—26) 283(2 25—26 29 37) 284—286(2) 288(2 29) 289(25) 292(26) 293(2) 309(29 37) 317(2) 326(2) 336(2) 339(2) 342(2) 361(2) 477—478
Moro, G.      309(63) 439(118) 479—480
Morris, A.      43(141—142) 71(166) 74(166) 76(200) 81(166) 121—123
Morris, S.A.      84(212) 123
Morrow, B.      43(144) 121
Morse potentials, nonadiabatic transitions, curve crossings, multichannel processes      159—161
Morse, P.M.      732(81) 638—639(81) 644—645(81) 764
Morse, R.D.      72—74(196) 106—108(288) 122 125
Mossberg, T.W.      251(32—33) 260(93) 271 273
Motion equations, inertial effects, dielectric and birefringence relaxation, free rotational motion      419—425
Motion equations, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      433—439
Mouflih, B.      125
Mowat, J.R.      10(63) 119
Mueller-Dethlefs, K.      5(19—21) 84(208) 99(271—272) 117 123 125
Mukamel, S.      237(7) 257(59 67/71—72 74) 264—265(67) 270 272
Mullen, K.      133(66) 182(66) 232
Muller, L.J.      250(30) 252(30 37) 253(37) 254(30) 256(30) 271
Muller, M.      252(36) 271
Mulligan, B.      277(6) 446(6) 451(6) 454(6) 477 504(65) 579(65) 584(65) 693(65) 697—698(65) 682—684(65) 686(65) 704(65) 709(65) 764
Multichannel processes, nonadiabatic transitions, curve crossings      152—161
Multichannel processes, nonadiabatic transitions, curve crossings, energies greater than adiabatic channel      155—156
Multichannel processes, nonadiabatic transitions, curve crossings, energies lower than adiabatic channel      156—159
Multichannel processes, nonadiabatic transitions, curve crossings, numerical applications      159—161
Multichannel processes, nonadiabatic transitions, curve crossings, open channel cases      153—155
Multichannel processes, nonadiabatic transitions, curve crossings, research background      130
Multichannel processes, noncurve crossing, nonadiabatic transitions, attractive potential model      178—181
Multichannel processes, time-dependent level crossings, nonadiabatic transitions      197—201
Multidimensional problems, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit      579—581
Multidimensional problems, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of      585—588
Multidimensional problems, molecular control, time-dependent external fields      211—214
Multidimensional problems, nonadiabatic transitions, curve crossings, research background      130
Multidimensional problems, nonadiabatic transitions, curve crossings, two-state theory      161—168
Multidimensional problems, time-dependent level crossings, nonadiabatic transitions      197—201
Multidimensional Raman spectroscopy      see "Raman spectroscopy"
Multiphoton absorption, laser photoelectron spectroscopy, molecular excitation      6—8
Multiphoton ionization, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules      24—25
Multiplet-specific potentials, laser photoelectron spectroscopy, OH radicals      40—42
Multiplicative noise, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit      579—581
Multirefernce singldl/double excitation configuration interaction (MRD-CI), NH radical spectroscopy      60—61
Murry, R.L.      245(20) 257(85—86) 258(85) 260(20 85 94—95) 269(85) 271 273
Nagasawa, Y.      236(5) 270
Naitoh, Y.      252(40) 257(61) 261(61) 271—272
Nakamura, H.      128(8) 129(12—23) 130(21—26) 131 38 44 46—47) 132(52) 133(69) 134(8) 137(13 76—78) 138(17) 140(13) 141(13 19) 142(18) 143(18—19) 146(18—19) 152(24—25 79—80) 156(8 80) 159—160(25) 162(89—90) 163(26 89—90) 164(89) 165(26 91) 166(26) 170—171(31—32 34) 178(31) 181(31 34) 182(44) 186(13 22) 188(13) 192(17—18 44) 193(52) 196(52) 198(24—25) 205(38) 206(46—47) 212(44) 224(32) 230—233
Nakano, T.      282(21) 289(21) 462(21) 478
Namioka, T.      12(88) 119
Nanbu, S.      232
Narasimhan, L.R.      246(27) 271
Nasu, K.      132(55) 232
Nee, J.B.      79(201) 123
Neel relaxation, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, Fokker — Planck equation with delta function      746—749
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion      501—504
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      566—569
Neel relaxation, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      561—566
Neel, L.      446(125) 481 501—502(37) 561(37) 763
Nelson, K.A.      252(38—40) 254(45) 257(50—52) 271—272
Neusser, H.J.      3(5) 117
Newtonian equation, Kramers reaction rate theory, Klein — Kramers equation, Kramers' derivation      512—513
Newtonian equation, Kramers reaction rate theory, Klein — Kramers equation, range of validity, damping regimes      551—555
Ng, C.U.      43(143) 121
Ng, C.Y.      94(250) 124
Ng, T.L.      36(124) 120
Ngai, K.L.      245(18) 271
NH radical, laser photoelectron spectroscopy, $NH i^{l} \Pi$ state      61—62
NH radical, laser photoelectron spectroscopy, $NH j^{1} \Delta$ state      62—66
NH radical, laser photoelectron spectroscopy, (2 + 1) REMPI process      59—61
NH radical, laser photoelectron spectroscopy, diatomic radicals      59—70
NH radical, laser photoelectron spectroscopy, rotationally resolved photoelectron spectroscopy      66—70
Niedner-Schatteburg, G.      84(208) 123
Nieman, G.C.      99(266—269) 100(268—269) 124—125
Nikitin model, nonadiabatic transitions, noncurve crossings      169—172
Nikitin model, noncurve crossing, nonadiabatic transitions, repulsive potential model      177—178
Nikitin model, time-dependent level crossings, nonadiabatic transitions      201—206
Nikitin, E.E.      128(6 11) 133(70) 134(11) 169(6) 171(6) 177(6) 201(6) 224(6) 230—232
Nilgens, H.      245(16) 271
Nishimura, Y.      84(206) 123
Nobusada, K.      130(26) 162(90) 163(26 90) 165(26 91) 166(26) 231 233
Noda, K.      10(61) 119
Nogues, M.      674(86) 764
Nohre, C.      84(205) 123
Noisy light, fifth-order Raman spectroscopy      266
Nonadiabatic transitions, curve crossings, future research issues      229—230
Nonadiabatic transitions, curve crossings, limitations of      181—182
Nonadiabatic transitions, curve crossings, multichannel processes      152—161
Nonadiabatic transitions, curve crossings, multichannel processes, energies greater than adiabatic channel      155—156
Nonadiabatic transitions, curve crossings, multichannel processes, energies lower than adiabatic channel      156—159
Nonadiabatic transitions, curve crossings, multichannel processes, numerical applications      159—161
Nonadiabatic transitions, curve crossings, multichannel processes, open channel cases      153—155
Nonadiabatic transitions, curve crossings, multidimensional problems      161—168
Nonadiabatic transitions, curve crossings, research background      128—132
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, exponential nonadiabatic transition      224—229
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, Landau — Zener nonadiabiatic transition      215—219
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, laser field control      214—229
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, Rosen — Zener nonadiabiatic transition      219—224
Nonadiabatic transitions, curve crossings, time-dependent external fields, molecular control, theoretical background      206—214
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, complete solutions      134—151
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, historical background      133—134
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, Landau — Zener case      142—146
Nonadiabatic transitions, curve crossings, two-state Landau — Zener — Stueckelberg problems, tunneling case      146—151
Nonadiabatic transitions, level crossings      132—133
Nonadiabatic transitions, level crossings, time-dependent crossings, applications      188—201
Nonadiabatic transitions, level crossings, time-dependent crossings, Demkov — Osherov model      203—201
Nonadiabatic transitions, level crossings, time-dependent crossings, Nikitin's model      201—203
Nonadiabatic transitions, level crossings, time-dependent crossings, quadratic solutions      182—188
Nonadiabatic transitions, noncurve crossings, attractive exponential potential models      178—181
Nonadiabatic transitions, noncurve crossings, exponential potential models      169—172
Nonadiabatic transitions, noncurve crossings, repulsive exponential potential models      175—178
Nonadiabatic transitions, noncurve crossings, Rosen — Zener — Demkov models      172—175
Nonadiabatic transitions, noncurve crossings, threshold effects      181—182
Nonadiabatic tunneling, two-state curve crossing      129
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, case study of      146—151
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, complete solutions      134—142
Nonadiabatic tunneling, two-state curve crossing, Landau — Zener — Stueckelberg problems, WKB wave function      139—142
Nonadiabatic tunneling, two-state curve crossing, multichannel systems, adiabatic potentials, higher energies than      155—156
Nonadiabatic tunneling, two-state curve crossing, multichannel systems, adiabatic potentials, lower energies than      156—159
Nonaxial symmetric potentials, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field      624—625
Nonaxial symmetric potentials, Kramers reaction rate theory, rotational Brownian motion      504
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, calculation principles      715—716
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, crossover function proof      717—718
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, divergence of escape rates      706—709
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, crossover high damping formulas      690—694
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, IHD divergence for small departures      681—690
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, notation      675—681
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, theoretical background      674—675
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, VLD limit applications      694—706
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, kinetic equation derivations      710—712
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, partition function, steepest descent evaluation      712—715
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, energy diffusion method      695—698
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial perturbations      703—706 725—740
Nonaxial symmetric potentials, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial/LD crossovers      698—703 718—725
Noncurve crossings, nonadiabatic transitions, attractive model      178—181
Noncurve crossings, nonadiabatic transitions, background      169
Noncurve crossings, nonadiabatic transitions, exponential potential model      169—172
Noncurve crossings, nonadiabatic transitions, repulsive model      175—178
Noncurve crossings, nonadiabatic transitions, Rosen — Zener — Demkov model      172—175
Noncurve crossings, nonadiabatic transitions, threshold effect      181—182
Noninertial Fokker — Planck equation      see "Smoluchowski equation"
Nonlinear dielectric relaxation, ac field responses      289—293
Nonlinear dielectric relaxation, ac field responses, dielectric response      289—291
Nonlinear dielectric relaxation, ac field responses, Kerr effect response      291—293
Nonlinear dielectric relaxation, arbitrary strength as factor      461—462
Nonlinear dielectric relaxation, historical background      293
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response      416—425
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response, extended rotational diffusion model      417—425
Nonlinear dielectric relaxation, inertial effects, strong dc electric field, linear response, Kerr effect responses      425—439
Nonlinear dielectric relaxation, strong dc electric field, exact solutions      330—347
Nonlinear dielectric relaxation, strong dc electric field, problem formulation and solution      317—330
Nonlinear dielectric relaxation, strong dc electric field, relaxation spectra evaluation      343—347
Nonlinear dielectric relaxation, strong dc electric field, relaxation time/spectra evaluation      340—343
Nonlinear dielectric relaxation, strong dc electric field, step-on response evaluation      336—340
Nonlinear dielectric relaxation, strong electric fields, nonstationary ac response      394—401
Nonlinear dielectric relaxation, strong electric fields, one-dimensional relaxation models      309—317
Nonlinear dielectric relaxation, strong electric fields, polar and polarizable molecules      382—394
Nonlinear dielectric relaxation, strong electric fields, rigid polar molecules      373—382
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå