Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
"Black water" phenomenon, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      522
"Magnetic bottle" analyzer, laser photoelectron spectroscopy      6—8
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, deuterium molecules      23—28
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, experimental protocols      8—9
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, hydrogen molecules      12—13
"Magnetic bottle" analyzer, SH radical spectroscopy      54
"Population over flux" concept, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      578
$N_{2}O$ molecule, vibronic coupling      86—92
$\pi$-pulse processes, nonadiabatic transition, time-dependent molecular control      221—224
$\pi$-pulse processes, nonadiabatic transition, time-dependent molecular control, exponential potential models      226—229
Aarts, J.F.M.      86(229) 123
Ab initio calculations, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules      24—28
Ab initio calculations, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization      15—19
Ab initio calculations, CIO radicals      74—77
Ab initio calculations, laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical      36—41
Ab initio calculations, SH radical      43—45
Abella, I.D.      246(26) 271
Abragam, A.      562(50) 763
Abramowitz, M.      286—287(39) 311(39) 313(39) 334(39) 338(39) 341—342(39) 399—400(39) 421—422(39) 424(39) 426(39) 428(39) 439(39) 470—471(39) 478 649(82) 667—668(82) 691—692(82) 724(82) 736(82) 753—754(82) 757(82) 760(82) 764
AC magnetic field, Kerr effect relaxation, applications to      462—463
AC magnetic field, Kerr effect relaxation, molecular hyperpolarizability, linear response and after effect solution      412—416
AC magnetic field, nonlinear dielectric relaxation      289—293
AC magnetic field, nonlinear dielectric relaxation, applications      462—463
AC magnetic field, nonlinear dielectric relaxation, dielectric response      289—291
AC magnetic field, nonlinear dielectric relaxation, Kerr effect response      291—293
AC magnetic field, nonlinear dielectric relaxation, nonstationary ac response      394—401
AC magnetic field, nonlinear dielectric relaxation, rigid polar molecules, superimposed ac/dc magnetic fields      373—382
AC magnetic field, superparamagnetic particle relaxation, uniaxial potential, superimposed ac/dc bias magnetic fields      456—460
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect      347—358
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, activation law behavior      356—358
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation      354—356
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations      351—353
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, linear response theory      347—349
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of      353—354
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, transient and relaxation times      350—351
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions      358—373
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions, dispersion plots      368—373
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions      362—364
Achiba, Y.      6(33) 109(33) 113(33) 117
Adiabatic potentials, nonadiabatic transitions, multichannel curve crossings, highest potential, energies higher than bottom of      155—156
Adiabatic potentials, nonadiabatic transitions, multichannel curve crossings, highest potential, energies lower than bottom of      156—159
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, attractive potential model      178—181
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, exponential potential model      169—172
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, Rosen — Zenker — Demkov model      172—175
Adiabatic potentials, time-dependent level crossings, nonadiabatic transitions      189—201
Adiabatic propagation matrices, time-dependent level crossings, nonadiabatic transitions      197—201
Adjoint operators, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations      613—617
Adjoint operators, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression      743—745
After effect solution, Kerr effect relaxation, linear ac response and      412—416
After effect solution, superparamagnetic particle relaxation, strong dc magnetic field      448—450
Agondov, N.V.      760(105) 765
Airy functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes      692—694
Aitken, A.C.      585—586(74) 594(74) 764
Aizenberg, I.B.      283(28) 286—287(28) 309(28) 315(38) 478
Albrecht, A.C.      261(96) 266(96 101—108 111 113—114) 273
Alexiewicz, W.      282—283(22) 286(38) 309(38) 402(92) 478 480
Altenloh, D.D.      106—108(289) 114(289) 125
Amano, T.      36(120—121) 38(120—121) 71(189) 120 122
Amiens, C.      674(85) 741(85) 764
Amitay, Z.      10(60 65) 19(60) 21(60) 119
Ammonia molecules, laser photoelectron spectroscopy      97—105
Anderson, S.L.      94(257) 124
Anderson, W.R.      59(147) 121
Andrews, A.L.      401(87) 480
Andrews, L.      71(178—179) 122
Angular momentum, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules      32—34
Angular momentum, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization      15—19
Angular momentum, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model      417—425
Angular momentum, laser photoelectron spectroscopy, conservation of      7—8
Angular momentum, SH radical spectroscopy      49—54
Angular momentum, superparamagnetic particle relaxation, strong dc magnetic field      448—450
Anharmonicity, fifth-order Raman spectroscopy      261—264
Anisotropically polarized molecules, dielectric relaxation in cubic potential      441
Anisotropically polarized molecules, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields      383—394
Anisotropically polarized molecules, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      444—446
Anisotropically polarized molecules, single domain ferromagnetic particles, Kramers reaction rate theory, rotational Brownian motion      561—566
Anisotropically polarized molecules, superparamagnetic particle relaxation, transient nonlinear response      451—456
Ansatz parameters, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation      635—637
Antonetti, A.      403(94) 480
Approximate validity, Kramers reaction rate theory, Smoluchowski equation, large viscosity model      546
Approximation techniques, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation      19—23
Aquilanti, V.      162(88) 233
Arakaki, Y.      10(61) 119
Arfken, G.B.      628(79) 764
Ariyoshi, T.      244(14) 271
Arndt, R.      254(47) 272
Arrhenius law, reaction rate theory      486—490
Ascenzi, D.      7(49—50) 81—83(49—50) 90—91(50) 94(49) 96(50) 97(49—50) 99(50) 118
Aseltine, J.A.      744(90) 748(90) 764
Ashfold, M.N.R.      6(38 43—46) 7(43—44 47—50 53) 43(53 145) 59(153 156 158) 55—56(53) 59(38) 62—65(38) 66(38 156) 72(193) 81—83(48—50) 85(48) 89(46) 90—91(50) 92(48) 96(50) 97(48 50 265) 99(50 272—273 277—280) 101(43—44 277—278 283) 102—103(43) 104(43—44) 105(43) 106—108(47—48 292) 109(45) 111(45) 113—114(46—47) 118 121—122 124—125
Ashworth, S.H.      43(139) 121
Asymmetric stretch, OCS fragmentation      93—97
Asymptotic expansion, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      356—358
Asymptotic expansion, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      431—439
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, divergence of      709
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      674—675
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, uniaxial/LD crossovers      700—703 720—725
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, very low damping (VLD) limits      698
Asymptotic expansion, Kramers reaction rate theory, escape rate validity      497—501
Asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate, calculations      611—613
Asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate, mean first passage time (MFPT) expression      617—619
Asymptotic expansion, nonlinear Brownian relaxation, strong electric fields, rigid polar molecules, superimposed ac/dc electric fields      380—382
Attractive potential model, noncurve crossing, nonadiabatic transitions      178—181
Aue, D.H.      125
August, J.      40(130) 121
Autocorrelation frunction, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      444—446
Autoionization, SH radical spectroscopy      55—59
Avoided crossings, molecular control, time-dependent external fields      211—214
Avoided crossings, nonadiabatic transitions, multichannel curve crossings      152—153
Avoided crossings, nonadiabatic transitions, multichannel curve crossings, open channel system      153—155
Avoided crossings, nonadiabatic transitions, multidimensional problems      165—168
Avoided crossings, noncurve crossing, nonadiabatic transitions      181—182
Avoided crossings, time-dependent level crossings, nonadiabatic transitions      190—201
Avoided crossings, time-dependent molecular control, Landau — Zener model      217—219
Axial symmetry, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field      624—625
Axial symmetry, Kramers reaction rate theory, rotational Brownian motion, magnetocrystalline anisotropy      570—575
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, calculation principles      715—716
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, crossover function proof      717—718
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, divergence of escape rates      706—709
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, crossover high damping formulas      690—694
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, IHD divergence for small departures      681—690
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, notation      675—681
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, theoretical background      674—675
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, VLD limit applications      694—706
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, kinetic equation derivations      710—712
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, partition function, steepest descent evaluation      712—715
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, energy diffusion method      695—698
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial perturbations      703—706 725—740
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial/LD crossovers      698—703 718—725
Baer, M.      128(10) 134(10) 229(10) 230
Bagchi, B.      267(121) 274
Baker, A.D.      6(27—28) 28(27) 117
Baker, C.      6(27) 28(27) 117
Baker, J.      84(225—226) 89(225) 92(225—226) 123
Baldwin, D.P.      10(83) 43(143) 119 121
Baldwin, M.A.      7(48 50) 81—83(48 50) 85(48) 90—91(50) 92(48) 96(50) 97(48 50) 99(50) 118
Ballard, R.E.      6(31) 70(31) 117
Bamford, D.J.      10(80) 119
Bandrauk, a.d.      233
Barany, A.      136(71—72) 171(72) 137(75) 232
Barbara, B.      626(77—78) 674(85) 741(85) 764
Barrier limit, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation      636—637
Barrier limit, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula      591—593
Barrier limit, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations      587 600—606
Barrier limit, Kramers reaction rate theory, Klein — Kramers equation, linearized Klein — Kramers equation, potential barrier summit, IHD regime      523—524
Barrier limit, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations      531
Barrier limit, Kramers reaction rate theory, Maxwell — Boltzmann distribution      496—497
Barrier limit, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy      573—575
Bartolini, P.      245(19) 271
Barton, S.A.      71(188) 122
Bartram, R.H.      132(53) 232
Basco, N.      72—74(196) 106—108(288) 122 125
Battett, A.H.      35(114) 120
Baumert, T.      71(177) 122
Baumgaertel, S.      72(191 197) 79(197) 122
Bayley, J.M.      108(292) 125
Bean, C.P.      446(124) 481
Bebelaar, D.      251(34—35) 271
Becker, R.      489(17) 581(17) 762
Bell, S.      36(124) 120
Bemand, P.P.      71(170) 122
Ben-Jacob, E.      133(60 63 66) 182(60 63 66) 232
Benn, R.      236(1) 247(1) 270
Bennett, C.L.      97(265) 124
Benoit, A.      626(77—78) 764
Benoit, H.      279—282(12) 286(12) 477
Bente, E.A.J.M.      251(35) 271
Berdan, J.      403(94) 480
Berg, M.      246(27) 250(30) 252(30 37 41) 253(37) 254(30 44 46) 256(30) 271—272
Bergmark, T.      125
Berkowitz, J.      6(32) 109(295) 117 125
Bernath, P.E.      59(150—151) 121
Berne, B.J.      244(12) 271
Bernoulli numbers, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor integral calculations      649—650
Bersohn, R.      36(119) 38(119) 96—97(260) 120 124
Bessel functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes      691—964
Bessel functions, nonlinear dielectric and birefringent high fields, build-up processes      287—288
Bessel functions, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, step-on response, permanent dipole effect      341—343
Bessel integral transformation, noncurve crossing, nonadiabatic transitions, exponential potential model      170—172
Bethe, H.A.      32(104) 120
Betteridge, D.      6(28) 117
Betterman, G.      254(47) 272
Bhatnagar — Gross — Krook (BGK) model, inertial effects, dielectric and birefringence relaxation      417
Bhatnagar, P.L.      417(98) 480
Bhattacharyya, S.      267(121) 274
Bias magnetic fields      see "Superimposed ac/dc magnetic fields"
Billing, G.D.      486(2) 538(2) 762
Binary collisions, Brownian motion principles      490—493
Birefringence relaxation, ac field responses      289—293
Birefringence relaxation, ac field responses, dielectric response      289—291
Birefringence relaxation, ac field responses, Kerr effect response      291—293
Birefringence relaxation, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      354 358—360
Birefringence relaxation, historical background      293
Birefringence relaxation, inertial effects, linear response      416—439
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, free rotation equation of motion      419—425
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, general equations      417—419
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, strong dc electric field      417—425
Birefringence relaxation, inertial effects, linear response, Kerr effect relaxation      428—439
Birefringence relaxation, inertial effects, linear response, spectra and relaxation times      429—439
Birefringence relaxation, inertial effects, linear response, strong dc electric field      416—425
Birefringence relaxation, molecular hyperpolarizability, linear ac response and after effect solution      413—416
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field      358—373
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, dispersion plots      368—373
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, equilibrium and first-order solutions, matrix continued fractions      362—364
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, second-order solutions      364—368
Birefringence relaxation, rotational diffusion, mean field potential, cubic potential molecules      439—441
Birefringence relaxation, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      442—446
Birefringence relaxation, strong electric fields, exact solutions      330—347
Birefringence relaxation, strong electric fields, nonstationary ac response      394—401
Birefringence relaxation, strong electric fields, one-dimensional model      307—317
Birefringence relaxation, strong electric fields, one-dimensional relaxation models      309—317
Birefringence relaxation, strong electric fields, polar and polarizable molecules      382—394
Birefringence relaxation, strong electric fields, problem formulation and solution      317—330
Birefringence relaxation, strong electric fields, relaxation spectra evaluation      343—347
Birefringence relaxation, strong electric fields, relaxation time/spectra evaluation      340—343
Birefringence relaxation, strong electric fields, rigid polar molecules      373—382
Birefringence relaxation, strong electric fields, step-on response evaluation      336—340
Birefringence relaxation, superparamagnetic particles      446—460
Birefringence relaxation, superparamagnetic particles, strong dc field, Langevin equation      447—450
Birefringence relaxation, superparamagnetic particles, transient nonlinear response      450—456
Birefringence relaxation, superparamagnetic particles, uniaxial particles, ac/dc bias magnetic fields      456—459
Birefringence relaxation, transient responses in high fields      283—288
Birefringence relaxation, transient responses in high fields, build-up processes, relaxation times      286—288
Birefringence relaxation, transient responses in high fields, step-on response, nonpolar polarizable molecules      285—286
Birefringence relaxation, transient responses in high fields, step-on response, polar molecules      284—285
Bischel, W.K.      10(80) 119
Bishenden, E.      71(171 173 175) 72(171) 122
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution      745—749
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, integral expression of escape time      743—745
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, principles      741—743
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, series expression for summit time      752—753
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, uniaxial anisotropy explicit expression      753—758
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, zero-frequency limit recurrence relations      749—752
Bitto, H.      84(213) 123
Blaise, P.      283(30) 309(30) 311(30) 336(30) 339(30) 478
Blanchet, V.      4(13—14) 117
Blank, D.A.      257(70) 262(70 97—98) 263(98) 265—266(98) 270(97) 272—273
Blatter, G.      133(65) 182(65) 232
Block, H.      282(15) 462(15) 478
Blocking temperature, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      674—675
Blomberg, C.      745(106) 765
Boettcher, C.J.F.      401(89) 404(89) 480
Bohr frequencies, coherent anti-Stokes Raman scattering (CARS)      239—243
Boivin, D.      626(77) 764
Bolton, J.R.      132(50) 232
Boltzmann distribution function      see also "Maxwell — Boltzmann distribution function"
Boltzmann distribution function, Brownian motion principles      490—493
Boltzmann distribution function, dielectric relaxation in cubic potential      441
Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers derivation, Liouville equation      509
Boltzmann distribution function, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields      330—347
Boltzmann distribution function, orientational relaxation, rotational diffusion model      300
Bondybey, V.E.      84(208) 123
Bonet Orozco, E.      626(77—78) 764
Bonnie, J.H.M.      10(68 70) 12(68) 33(68 70) 34(70) 119
Bordewijk, P.      401(89) 404(89) 480
Borkovec, M.      486—491(1) 501(1) 504(1) 527(1) 541(1) 576(1) 578—579(1) 581—583(1) 585(1) 588(1) 597(1) 601(1) 608(1) 611(1) 617(1) 620(1) 623(1) 632(1) 635(1) 656(1) 743(1) 762(1) 762
Born, M.      7(55) 59(55) 66(55) 118
Borrell, P.      34(108) 120
Bose — Einstein corrected Rayleigh-wing spectra, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      244—246 248
Bose, T.K.      289(42) 373(42) 462(42) 478
Botschwina, P.      93(248) 124
Bound superexcited states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecular photoionization      28
Boundary conditions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates      680—681
Boundary conditions, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential bridging formula      651—655
Boundary conditions, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function      640—646
Boundary conditions, Kramers reaction rate theory, Klein — Kramers equation, linearized solution      525—527
Boundary conditions, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations      530—531
Boundary conditions, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation      576—578
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, derivation and solution      630—631
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Landau — Lifshitz equation      629—630
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression      619—620
Bowers, M.T.      125
Bowling, D.L.      282(23) 286(23) 292(23) 326(23) 478
Bowtie multilevel model, time-dependent level crossings, nonadiabatic transitions      204—206
Bragg, S.L.      31(101) 120
Bratos, S.      254(49) 272 417(105—106) 422(106) 480
Brault, J.W.      31(101) 120
Braun, H.B.      581(73) 598(73) 760(101) 764—765
Brazier, C.R.      59(151) 121
Breymayer, H.-J.      373(79) 479
Bridging formula, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential model      650—655
Bridging formula, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential model, Wiener — Hopf method Fourier transforms      669—674
Brinkman's hierarchy, inertial effects, dielectric and birefringence relaxation      416—417
Brinkman's hierarchy, Kramers reaction rate theory, Smoluchowski equation, large viscosity model      547
Brinkman, H.C.      416(97) 480 454(46) 579(69) 581(69) 746(46) 763—764
Brostroem, L.      10(63—64) 119
Brot, C.      439(116) 440(119) 480
Broto, J.M.      674(85) 741(85) 764
Brouard, M.      40(130) 121
Broudem, C.      10(65) 119
Brown, J.M.      43(139) 121
Brown, W.F.Jr.      445(122) 446(122 126) 447(122) 480—481 492(21) 502—503(21) 504(62) 551(21) 562(21) 574(21) 579(62) 593(62) 597(62) 612(62) 614(21) 622(62) 674(21) 678(21) 682 62) 683(62) 716(21) 761(21) 762
Browne, D.A.      133(65) 182(65) 232
Brownian motion, dielectric and Kerr effect relaxation, research background      277—279
Brownian motion, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation      354—356
Brownian motion, Kramers reaction rate theory      490—493
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model      544
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes      513—516
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution      516—520
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, low-damping (LD) regime      531
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå