Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
"Black water" phenomenon, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 522
"Magnetic bottle" analyzer, laser photoelectron spectroscopy 6—8
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, deuterium molecules 23—28
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, experimental protocols 8—9
"Magnetic bottle" analyzer, laser photoelectron spectroscopy, hydrogen molecules 12—13
"Magnetic bottle" analyzer, SH radical spectroscopy 54
"Population over flux" concept, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation 578
molecule, vibronic coupling 86—92
-pulse processes, nonadiabatic transition, time-dependent molecular control 221—224
-pulse processes, nonadiabatic transition, time-dependent molecular control, exponential potential models 226—229
Aarts, J.F.M. 86(229) 123
Ab initio calculations, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecules 24—28
Ab initio calculations, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization 15—19
Ab initio calculations, CIO radicals 74—77
Ab initio calculations, laser photoelectron spectroscopy, short-lived diatomic radicals, OH radical 36—41
Ab initio calculations, SH radical 43—45
Abella, I.D. 246(26) 271
Abragam, A. 562(50) 763
Abramowitz, M. 286—287(39) 311(39) 313(39) 334(39) 338(39) 341—342(39) 399—400(39) 421—422(39) 424(39) 426(39) 428(39) 439(39) 470—471(39) 478 649(82) 667—668(82) 691—692(82) 724(82) 736(82) 753—754(82) 757(82) 760(82) 764
AC magnetic field, Kerr effect relaxation, applications to 462—463
AC magnetic field, Kerr effect relaxation, molecular hyperpolarizability, linear response and after effect solution 412—416
AC magnetic field, nonlinear dielectric relaxation 289—293
AC magnetic field, nonlinear dielectric relaxation, applications 462—463
AC magnetic field, nonlinear dielectric relaxation, dielectric response 289—291
AC magnetic field, nonlinear dielectric relaxation, Kerr effect response 291—293
AC magnetic field, nonlinear dielectric relaxation, nonstationary ac response 394—401
AC magnetic field, nonlinear dielectric relaxation, rigid polar molecules, superimposed ac/dc magnetic fields 373—382
AC magnetic field, superparamagnetic particle relaxation, uniaxial potential, superimposed ac/dc bias magnetic fields 456—460
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect 347—358
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, activation law behavior 356—358
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, correlation time integral representation 354—356
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, dipole moment evaluations 351—353
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, linear response theory 347—349
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, relaxation function and times, evaluation of 353—354
AC magnetic field, weak steady-state response superimposed on dc bias field, dynamic Kerr effect, transient and relaxation times 350—351
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions 358—373
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions, dispersion plots 368—373
AC magnetic field, weak steady-state response superimposed on dc bias field, perturbation solutions, equilibrium and first-order solutions, matrix continued fractions 362—364
Achiba, Y. 6(33) 109(33) 113(33) 117
Adiabatic potentials, nonadiabatic transitions, multichannel curve crossings, highest potential, energies higher than bottom of 155—156
Adiabatic potentials, nonadiabatic transitions, multichannel curve crossings, highest potential, energies lower than bottom of 156—159
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, attractive potential model 178—181
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, exponential potential model 169—172
Adiabatic potentials, nonadiabatic transitions, noncurve crossing, Rosen — Zenker — Demkov model 172—175
Adiabatic potentials, time-dependent level crossings, nonadiabatic transitions 189—201
Adiabatic propagation matrices, time-dependent level crossings, nonadiabatic transitions 197—201
Adjoint operators, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations 613—617
Adjoint operators, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, integral escape time expression 743—745
After effect solution, Kerr effect relaxation, linear ac response and 412—416
After effect solution, superparamagnetic particle relaxation, strong dc magnetic field 448—450
Agondov, N.V. 760(105) 765
Airy functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes 692—694
Aitken, A.C. 585—586(74) 594(74) 764
Aizenberg, I.B. 283(28) 286—287(28) 309(28) 315(38) 478
Albrecht, A.C. 261(96) 266(96 101—108 111 113—114) 273
Alexiewicz, W. 282—283(22) 286(38) 309(38) 402(92) 478 480
Altenloh, D.D. 106—108(289) 114(289) 125
Amano, T. 36(120—121) 38(120—121) 71(189) 120 122
Amiens, C. 674(85) 741(85) 764
Amitay, Z. 10(60 65) 19(60) 21(60) 119
Ammonia molecules, laser photoelectron spectroscopy 97—105
Anderson, S.L. 94(257) 124
Anderson, W.R. 59(147) 121
Andrews, A.L. 401(87) 480
Andrews, L. 71(178—179) 122
Angular momentum, (1 + 1') resonance-enhanced multiphoton ionization, hydrogen molecules 32—34
Angular momentum, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photoionization 15—19
Angular momentum, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model 417—425
Angular momentum, laser photoelectron spectroscopy, conservation of 7—8
Angular momentum, SH radical spectroscopy 49—54
Angular momentum, superparamagnetic particle relaxation, strong dc magnetic field 448—450
Anharmonicity, fifth-order Raman spectroscopy 261—264
Anisotropically polarized molecules, dielectric relaxation in cubic potential 441
Anisotropically polarized molecules, nonlinear Brownian relaxation, strong electric fields, superimposed ac/dc electric fields 383—394
Anisotropically polarized molecules, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 444—446
Anisotropically polarized molecules, single domain ferromagnetic particles, Kramers reaction rate theory, rotational Brownian motion 561—566
Anisotropically polarized molecules, superparamagnetic particle relaxation, transient nonlinear response 451—456
Ansatz parameters, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation 635—637
Antonetti, A. 403(94) 480
Approximate validity, Kramers reaction rate theory, Smoluchowski equation, large viscosity model 546
Approximation techniques, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation 19—23
Aquilanti, V. 162(88) 233
Arakaki, Y. 10(61) 119
Arfken, G.B. 628(79) 764
Ariyoshi, T. 244(14) 271
Arndt, R. 254(47) 272
Arrhenius law, reaction rate theory 486—490
Ascenzi, D. 7(49—50) 81—83(49—50) 90—91(50) 94(49) 96(50) 97(49—50) 99(50) 118
Aseltine, J.A. 744(90) 748(90) 764
Ashfold, M.N.R. 6(38 43—46) 7(43—44 47—50 53) 43(53 145) 59(153 156 158) 55—56(53) 59(38) 62—65(38) 66(38 156) 72(193) 81—83(48—50) 85(48) 89(46) 90—91(50) 92(48) 96(50) 97(48 50 265) 99(50 272—273 277—280) 101(43—44 277—278 283) 102—103(43) 104(43—44) 105(43) 106—108(47—48 292) 109(45) 111(45) 113—114(46—47) 118 121—122 124—125
Ashworth, S.H. 43(139) 121
Asymmetric stretch, OCS fragmentation 93—97
Asymptotic expansion, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 356—358
Asymptotic expansion, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 431—439
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, divergence of 709
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 674—675
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, uniaxial/LD crossovers 700—703 720—725
Asymptotic expansion, Kramers reaction rate theory, axial/nonaxial symmetric potentials, very low damping (VLD) limits 698
Asymptotic expansion, Kramers reaction rate theory, escape rate validity 497—501
Asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate, calculations 611—613
Asymptotic expansion, Kramers reaction rate theory, low-damping (LD) regime, escape rate, mean first passage time (MFPT) expression 617—619
Asymptotic expansion, nonlinear Brownian relaxation, strong electric fields, rigid polar molecules, superimposed ac/dc electric fields 380—382
Attractive potential model, noncurve crossing, nonadiabatic transitions 178—181
Aue, D.H. 125
August, J. 40(130) 121
Autocorrelation frunction, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 444—446
Autoionization, SH radical spectroscopy 55—59
Avoided crossings, molecular control, time-dependent external fields 211—214
Avoided crossings, nonadiabatic transitions, multichannel curve crossings 152—153
Avoided crossings, nonadiabatic transitions, multichannel curve crossings, open channel system 153—155
Avoided crossings, nonadiabatic transitions, multidimensional problems 165—168
Avoided crossings, noncurve crossing, nonadiabatic transitions 181—182
Avoided crossings, time-dependent level crossings, nonadiabatic transitions 190—201
Avoided crossings, time-dependent molecular control, Landau — Zener model 217—219
Axial symmetry, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, weak transverse field 624—625
Axial symmetry, Kramers reaction rate theory, rotational Brownian motion, magnetocrystalline anisotropy 570—575
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, calculation principles 715—716
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, crossover function proof 717—718
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, divergence of escape rates 706—709
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, crossover high damping formulas 690—694
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, IHD divergence for small departures 681—690
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, notation 675—681
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, theoretical background 674—675
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, interpolation formulas, VLD limit applications 694—706
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, kinetic equation derivations 710—712
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, partition function, steepest descent evaluation 712—715
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, energy diffusion method 695—698
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial perturbations 703—706 725—740
Axial symmetry, Kramers reaction rate theory, single domain ferromagnetic particles, escape rates, VLD limit applications, uniaxial/LD crossovers 698—703 718—725
Baer, M. 128(10) 134(10) 229(10) 230
Bagchi, B. 267(121) 274
Baker, A.D. 6(27—28) 28(27) 117
Baker, C. 6(27) 28(27) 117
Baker, J. 84(225—226) 89(225) 92(225—226) 123
Baldwin, D.P. 10(83) 43(143) 119 121
Baldwin, M.A. 7(48 50) 81—83(48 50) 85(48) 90—91(50) 92(48) 96(50) 97(48 50) 99(50) 118
Ballard, R.E. 6(31) 70(31) 117
Bamford, D.J. 10(80) 119
Bandrauk, a.d. 233
Barany, A. 136(71—72) 171(72) 137(75) 232
Barbara, B. 626(77—78) 674(85) 741(85) 764
Barrier limit, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation 636—637
Barrier limit, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula 591—593
Barrier limit, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, particle current calculations 587 600—606
Barrier limit, Kramers reaction rate theory, Klein — Kramers equation, linearized Klein — Kramers equation, potential barrier summit, IHD regime 523—524
Barrier limit, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 531
Barrier limit, Kramers reaction rate theory, Maxwell — Boltzmann distribution 496—497
Barrier limit, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 573—575
Bartolini, P. 245(19) 271
Barton, S.A. 71(188) 122
Bartram, R.H. 132(53) 232
Basco, N. 72—74(196) 106—108(288) 122 125
Battett, A.H. 35(114) 120
Baumert, T. 71(177) 122
Baumgaertel, S. 72(191 197) 79(197) 122
Bayley, J.M. 108(292) 125
Bean, C.P. 446(124) 481
Bebelaar, D. 251(34—35) 271
Becker, R. 489(17) 581(17) 762
Bell, S. 36(124) 120
Bemand, P.P. 71(170) 122
Ben-Jacob, E. 133(60 63 66) 182(60 63 66) 232
Benn, R. 236(1) 247(1) 270
Bennett, C.L. 97(265) 124
Benoit, A. 626(77—78) 764
Benoit, H. 279—282(12) 286(12) 477
Bente, E.A.J.M. 251(35) 271
Berdan, J. 403(94) 480
Berg, M. 246(27) 250(30) 252(30 37 41) 253(37) 254(30 44 46) 256(30) 271—272
Bergmark, T. 125
Berkowitz, J. 6(32) 109(295) 117 125
Bernath, P.E. 59(150—151) 121
Berne, B.J. 244(12) 271
Bernoulli numbers, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor integral calculations 649—650
Bersohn, R. 36(119) 38(119) 96—97(260) 120 124
Bessel functions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes 691—964
Bessel functions, nonlinear dielectric and birefringent high fields, build-up processes 287—288
Bessel functions, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, step-on response, permanent dipole effect 341—343
Bessel integral transformation, noncurve crossing, nonadiabatic transitions, exponential potential model 170—172
Bethe, H.A. 32(104) 120
Betteridge, D. 6(28) 117
Betterman, G. 254(47) 272
Bhatnagar — Gross — Krook (BGK) model, inertial effects, dielectric and birefringence relaxation 417
Bhatnagar, P.L. 417(98) 480
Bhattacharyya, S. 267(121) 274
Bias magnetic fields see "Superimposed ac/dc magnetic fields"
Billing, G.D. 486(2) 538(2) 762
Binary collisions, Brownian motion principles 490—493
Birefringence relaxation, ac field responses 289—293
Birefringence relaxation, ac field responses, dielectric response 289—291
Birefringence relaxation, ac field responses, Kerr effect response 291—293
Birefringence relaxation, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 354 358—360
Birefringence relaxation, historical background 293
Birefringence relaxation, inertial effects, linear response 416—439
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, free rotation equation of motion 419—425
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, general equations 417—419
Birefringence relaxation, inertial effects, linear response, extended rotational diffusion model, strong dc electric field 417—425
Birefringence relaxation, inertial effects, linear response, Kerr effect relaxation 428—439
Birefringence relaxation, inertial effects, linear response, spectra and relaxation times 429—439
Birefringence relaxation, inertial effects, linear response, strong dc electric field 416—425
Birefringence relaxation, molecular hyperpolarizability, linear ac response and after effect solution 413—416
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field 358—373
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, dispersion plots 368—373
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, equilibrium and first-order solutions, matrix continued fractions 362—364
Birefringence relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, second-order solutions 364—368
Birefringence relaxation, rotational diffusion, mean field potential, cubic potential molecules 439—441
Birefringence relaxation, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 442—446
Birefringence relaxation, strong electric fields, exact solutions 330—347
Birefringence relaxation, strong electric fields, nonstationary ac response 394—401
Birefringence relaxation, strong electric fields, one-dimensional model 307—317
Birefringence relaxation, strong electric fields, one-dimensional relaxation models 309—317
Birefringence relaxation, strong electric fields, polar and polarizable molecules 382—394
Birefringence relaxation, strong electric fields, problem formulation and solution 317—330
Birefringence relaxation, strong electric fields, relaxation spectra evaluation 343—347
Birefringence relaxation, strong electric fields, relaxation time/spectra evaluation 340—343
Birefringence relaxation, strong electric fields, rigid polar molecules 373—382
Birefringence relaxation, strong electric fields, step-on response evaluation 336—340
Birefringence relaxation, superparamagnetic particles 446—460
Birefringence relaxation, superparamagnetic particles, strong dc field, Langevin equation 447—450
Birefringence relaxation, superparamagnetic particles, transient nonlinear response 450—456
Birefringence relaxation, superparamagnetic particles, uniaxial particles, ac/dc bias magnetic fields 456—459
Birefringence relaxation, transient responses in high fields 283—288
Birefringence relaxation, transient responses in high fields, build-up processes, relaxation times 286—288
Birefringence relaxation, transient responses in high fields, step-on response, nonpolar polarizable molecules 285—286
Birefringence relaxation, transient responses in high fields, step-on response, polar molecules 284—285
Bischel, W.K. 10(80) 119
Bishenden, E. 71(171 173 175) 72(171) 122
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution 745—749
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, integral expression of escape time 743—745
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, principles 741—743
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, series expression for summit time 752—753
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, uniaxial anisotropy explicit expression 753—758
Bistable potentials, Kramers reaction rate theory, rigid Brownian rotator escape times, Green function evolution, zero-frequency limit recurrence relations 749—752
Bitto, H. 84(213) 123
Blaise, P. 283(30) 309(30) 311(30) 336(30) 339(30) 478
Blanchet, V. 4(13—14) 117
Blank, D.A. 257(70) 262(70 97—98) 263(98) 265—266(98) 270(97) 272—273
Blatter, G. 133(65) 182(65) 232
Block, H. 282(15) 462(15) 478
Blocking temperature, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 674—675
Blomberg, C. 745(106) 765
Boettcher, C.J.F. 401(89) 404(89) 480
Bohr frequencies, coherent anti-Stokes Raman scattering (CARS) 239—243
Boivin, D. 626(77) 764
Bolton, J.R. 132(50) 232
Boltzmann distribution function see also "Maxwell — Boltzmann distribution function"
Boltzmann distribution function, Brownian motion principles 490—493
Boltzmann distribution function, dielectric relaxation in cubic potential 441
Boltzmann distribution function, Kramers reaction rate theory, Klein — Kramers derivation, Liouville equation 509
Boltzmann distribution function, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields 330—347
Boltzmann distribution function, orientational relaxation, rotational diffusion model 300
Bondybey, V.E. 84(208) 123
Bonet Orozco, E. 626(77—78) 764
Bonnie, J.H.M. 10(68 70) 12(68) 33(68 70) 34(70) 119
Bordewijk, P. 401(89) 404(89) 480
Borkovec, M. 486—491(1) 501(1) 504(1) 527(1) 541(1) 576(1) 578—579(1) 581—583(1) 585(1) 588(1) 597(1) 601(1) 608(1) 611(1) 617(1) 620(1) 623(1) 632(1) 635(1) 656(1) 743(1) 762(1) 762
Born, M. 7(55) 59(55) 66(55) 118
Borrell, P. 34(108) 120
Bose — Einstein corrected Rayleigh-wing spectra, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations 244—246 248
Bose, T.K. 289(42) 373(42) 462(42) 478
Botschwina, P. 93(248) 124
Bound superexcited states, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, deuterium molecular photoionization 28
Boundary conditions, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates 680—681
Boundary conditions, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential bridging formula 651—655
Boundary conditions, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation, energy distribution function 640—646
Boundary conditions, Kramers reaction rate theory, Klein — Kramers equation, linearized solution 525—527
Boundary conditions, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 530—531
Boundary conditions, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) escape rate calculation 576—578
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, derivation and solution 630—631
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Landau — Lifshitz equation 629—630
Boundary layer approximation, Kramers reaction rate theory, low-damping (LD) regime, escape rate calculations, Stokes' theorem expression 619—620
Bowers, M.T. 125
Bowling, D.L. 282(23) 286(23) 292(23) 326(23) 478
Bowtie multilevel model, time-dependent level crossings, nonadiabatic transitions 204—206
Bragg, S.L. 31(101) 120
Bratos, S. 254(49) 272 417(105—106) 422(106) 480
Brault, J.W. 31(101) 120
Braun, H.B. 581(73) 598(73) 760(101) 764—765
Brazier, C.R. 59(151) 121
Breymayer, H.-J. 373(79) 479
Bridging formula, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential model 650—655
Bridging formula, Kramers reaction rate theory, crossover between IHD/VLD regimes, double well potential model, Wiener — Hopf method Fourier transforms 669—674
Brinkman's hierarchy, inertial effects, dielectric and birefringence relaxation 416—417
Brinkman's hierarchy, Kramers reaction rate theory, Smoluchowski equation, large viscosity model 547
Brinkman, H.C. 416(97) 480 454(46) 579(69) 581(69) 746(46) 763—764
Brostroem, L. 10(63—64) 119
Brot, C. 439(116) 440(119) 480
Broto, J.M. 674(85) 741(85) 764
Brouard, M. 40(130) 121
Broudem, C. 10(65) 119
Brown, J.M. 43(139) 121
Brown, W.F.Jr. 445(122) 446(122 126) 447(122) 480—481 492(21) 502—503(21) 504(62) 551(21) 562(21) 574(21) 579(62) 593(62) 597(62) 612(62) 614(21) 622(62) 674(21) 678(21) 682 62) 683(62) 716(21) 761(21) 762
Browne, D.A. 133(65) 182(65) 232
Brownian motion, dielectric and Kerr effect relaxation, research background 277—279
Brownian motion, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation 354—356
Brownian motion, Kramers reaction rate theory 490—493
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, large viscosity model 544
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, mean and mean square momentum changes 513—516
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 516—520
Brownian motion, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, low-damping (LD) regime 531
Ðåêëàìà