Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Advances in chemical physics. Volume 117
Àâòîðû: Prigogine I., Rice S.A.
Àííîòàöèÿ: Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.
This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.
ßçûê:
Ðóáðèêà: Ôèçèêà /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 2001
Êîëè÷åñòâî ñòðàíèö: 831
Äîáàâëåíà â êàòàëîã: 03.08.2014
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
Demoncy, N. 626(77) 764
DeMott, D.C. 266(105) 273
Depolarized correlation function, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations 242—243
Deschenes, L.A. 257(54) 272
Deuterium molecules, resonance-enhanced multiphoton ionization (REMPI) spectroscopy 9—34
Deuterium molecules, resonance-enhanced multiphoton ionization (REMPI) spectroscopy, (3 + 1 REMPI) 23—28
Diabatic coupling techniques, nonadiabatic transitions, curve crossings, multidimensional problems 165—168
Diabatic potentials, noncurve crossing, nonadiabatic transitions, attractive potential model 178—181
Diabatic potentials, noncurve crossing, nonadiabatic transitions, exponential potential model 169—172
Diabatic potentials, time-dependent level crossings, nonadiabatic transitions 189—201
Diabatic potentials, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems 138—151
Diabatic potentials, two-state curve crossing, nonadiabatic transitions, multichannel processes 160—161
Diatomic radicals, laser photoelectron spectroscopy 35—81
Diatomic radicals, laser photoelectron spectroscopy, CIO radical 70—81
Diatomic radicals, laser photoelectron spectroscopy, NH radical 59—70
Diatomic radicals, laser photoelectron spectroscopy, OH radical 35—42
Diatomic radicals, laser photoelectron spectroscopy, SH radical 42—59
Diatomic system, nonadiabatic transitions, multichannel curve crossings 152—161
Dick, B. 237(8) 242(8) 270
Dielectric relaxation, ac field responses 289—291
Dielectric relaxation, extended rotational diffusion model, strong dc electric field 417—425
Dielectric relaxation, Fourier series expansion 465—472
Dielectric relaxation, inertial effects, linear response 416—439
Dielectric relaxation, inertial effects, linear response, free rotation equation of motion 419—425
Dielectric relaxation, inertial effects, linear response, general equations 417—419
Dielectric relaxation, Kerr effect relaxation, linear response 428—429
Dielectric relaxation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution 522
Dielectric relaxation, linear integral expression 465—468
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field 358—373
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, dispersion plots 368—373
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, equilibrium and first-order solutions, matrix continued fractions 362—364
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, second-order solutions 364—368
Dielectric relaxation, rotational Brownian motion, Kramers reaction rate theory 566—569
Dielectric relaxation, rotational diffusion, mean field potential, cubic potential molecules 439—441
Dielectric relaxation, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 442—446
Dielectric relaxation, spectra and relaxation times 429—439
Dielectric relaxation, Stratonovich equation, proof of 461—465
Dielectric relaxation, strong electric fields, nonstationary ac response 394—401
Dielectric relaxation, strong electric fields, one-dimensional relaxation models 309—317
Dielectric relaxation, strong electric fields, polar and polarizable molecules 382—394
Dielectric relaxation, strong electric fields, research background 277—279
Dielectric relaxation, strong electric fields, rigid polar molecules 373—382
Dielectric relaxation, superparamagnetic particles 446—460
Dielectric relaxation, superparamagnetic particles, strong dc field, Langevin equation 447—450
Dielectric relaxation, superparamagnetic particles, transient nonlinear response 450—456
Dielectric relaxation, superparamagnetic particles, uniaxial particles, ac/dc bias magnetic fields 456—459
Diez-Rojo, T. 72(193) 122
Differential-recurrence equations, dielectric and birefringence relaxation 281—283
Differential-recurrence equations, dielectric and birefringence relaxation, strong dc electric fields 319—330
Differential-recurrence equations, dielectric relaxation in cubic potential 439—441
Differential-recurrence equations, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field 350—351
Differential-recurrence equations, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 405—412
Differential-recurrence equations, moment systems, continued fraction approach 303—307
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, first-order perturbation solutions 363—364
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, second-order perturbation solutions 366—368
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, polar and polarizable molecules 385—394
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, rigid polar molecules 374—382
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields 331—347
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, induced dipole step-on response 336—340
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, permanent dipole step-on response 340—343
Differential-recurrence equations, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility 442—446
Differential-recurrence equations, superparamagnetic particle relaxation, transient nonlinear response 451—456
Differential-recurrence equations, superparamagnetic particle relaxation, uniaxial potential 457—460
Diffusion coefficients, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, linearized Klein — Kramers equation, potential barrier summit 523—524
Diffusion coefficients, Kramers reaction rate theory, Klein — Kramers equation 511—512
Diffusion coefficients, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, phase variable averaging 538
Diffusion matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of 583—588
Dillon, M.A. 86(233) 123
Dimensionless parameters, dielectric relaxation in cubic potential 441
Dimensionless parameters, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response 406—412
Dimensionless parameters, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures 681—690
Dimensionless parameters, Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD/VLD regimes 549—550
Dimensionless parameters, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles 564—566
Dimensionless parameters, nonlinear Brownian relaxation, strong electric fields, rigid polar molecules, superimposed ac/dc electric fields 374—382
Dimensionless parameters, superparamagnetic particle relaxation 447
Dimensionless parameters, time-dependent level crossings, nonadiabatic transitions 190—201
Dimensionless parameters, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems 138—151
Dimethyl sulfide, laser photoelectron spectroscopy 113—116
Dipole-dipole interactions, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations 245—246
Dirac delta function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function, energy diffusion equation, proof 660—663
Dirac delta function, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation 567—569
Dirac delta function, orientational relaxation, rotational diffusion model 294—300
Dissociative recombination, laser photoelectron spectroscopy, (1 + 1' REMPI), hydrogen molecules 32—34
Dissociative recombination, laser photoelectron spectroscopy, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation 21—23
Dissociative recombination, laser photoelectron spectroscopy, hydrogen and deuterium molecules 9—11
Dixit, S.N. 15(90) 17(90) 21(90) 38(126) 120—121
Dixon, R.N. 93(240) 99(272—273 277—280) 101(277—278) 108(292) 124—125
Dobber, M.R. 81—83(203) 93—95(203) 100(282) 123 125
Docker, M.P. 40(130) 121
Doege, G. 254(47) 272
Doering, J.P. 84(218) 123
Doering, W. 489(17) 581(17) 762
Domcke, W. 4(12) 117
Donaldson, D.J. 71(171 173 175) 72(171) 84(219) 122—123
Doob, J.L. 492(23) 521(23) 762
Dormann, J.L. 489(59) 566(52) 574(59) 674(52) 707(52) 763—764
Double well potential model, Brownian motion principles 492—493
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, bridging formula 650—655
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fourier transforms in Wiener — Hopf method 669—674
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, population proof 672—674
Double well potential model, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 572—575
Double well potential model, Landau — Zener nonadiabatic transition, time-dependent molecular control 216—219
Douglas, A.E. 36(117) 66(161) 84(214) 97(262—263) 99(262) 120 122—124
Douglas, J.E. 125
Drabe, K.E. 5(16) 8(16) 117
Dressier, K. 21(93) 120
Dreyfus, C. 245(17) 271
Drift coefficients, Kramers reaction rate theory, Klein — Kramers equation 511—512
Du, W. 245(17) 271
Dugan, M.A. 266(101—102) 273
Duignan, M.T. 72—74(195) 122
Duncan, A.B.E. 86(230) 123
Dunlavey, S.J. 43(141—142) 121
Duppen, K. 257(58 64—65 82—84) 258(82) 261(64—65 83) 272—273
Durie, R.A. 71(185) 122
Dyke, J.M. 43(141—142) 71(166) 74(166) 76(200) 81(166) 121—123
Dynamic Kerr effect, ac field responses 291—293
Dynamic Kerr effect, arbitrary strength as factor 461—462
Dynamic Kerr effect, hyperpolarizabilities of molecules, linear ac response and after effect solution 412—416
Dynamic Kerr effect, hyperpolarizabilities of molecules, nonlinear step-on response 401—412
Dynamic Kerr effect, inertial effects, dielectric and birefringence relaxation, J diffusion model 417
Dynamic Kerr effect, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 437—439
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field 347—358
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, activation law behavior 356—358
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, correlation time integral representation 354—356
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, dipole moment evaluations 351—353
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, linear response theory 347—349
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, relaxation function and times, evaluation of 353—354
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, transient and relaxation times 350—351
Dynamic Kerr effect, orientational relaxation, rotational diffusion model 298—300
Dynamic Kerr effect, perturbation solution 358—373
Dynamic Kerr effect, perturbation solution, matrix continued fractions 362—364
Dynamic Kerr effect, perturbation solution, second-order exact solutions 364—368
Dynamic Kerr effect, Smoluchowski equation 279—283
Dynamic Kerr effect, strong dc electric field, exact solutions 330—347
Dynamic Kerr effect, strong dc electric field, exact solutions, step-on response, induced dipole effect 336—340
Dynamic Kerr effect, strong dc electric field, exact solutions, step-on response, permanent dipole effect 340—343
Dynamic Kerr effect, strong dc electric field, one-dimensional model 307—317
Dynamic Kerr effect, strong dc electric field, problem formulation and solution 317—330
Dynamic Kerr effect, strong dc electric field, relaxation spectra evaluation 343—347
Dynamic Kerr effect, strong dc electric field, relaxation time/spectra evaluation 340—343
Dynamic Kerr effect, strong dc electric field, research background 277—279
Dynamic Kerr effect, strong dc electric field, step-on response evaluation 336—340
Dynamic Kerr effect, weak ac field on dc bias field 347—358
Dynamic Kerr effect, weak ac field on dc bias field, correlation time integral representation 354—356
Dynamic Kerr effect, weak ac field on dc bias field, induced dipole effect evaluation 350—351
Dynamic Kerr effect, weak ac field on dc bias field, linear response theory 347—349
Dynamic Kerr effect, weak ac field on dc bias field, permanent dipole moment 351—353
Dynamic Kerr effect, weak ac field on dc bias field, relaxation functions/times evaluation 353—354
Ebata, T. 36(120—121) 38(120—121) 120
Echo spectroscopy, Raman-echo spectroscopy 246—256
Echo spectroscopy, Raman-echo spectroscopy, liquids 251—256
Echo spectroscopy, Raman-echo spectroscopy, solids and gases 251
Echo spectroscopy, Raman-echo spectroscopy, wave-mixing pathways 249—250
Edmonds, A.R. 299(58) 479
Edwards, A.K. 109(295) 125
Eigenvalue problem, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of 585—588
Eigenvalue problem, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, left eigenvector 585 598—600
Eikema, K.S.E. 29(98) 120
Einstein calculation techniques, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 639
Einstein calculation techniques, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution 517—520
Einstein calculation techniques, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, adjoint Fokker — Planck operator, differential equation 615—617
Einstein, A. 490(10) 505(10) 510(10) 761(10) 762
Eland, J.H.D. 6(29) 117
Electric birefringence function, nonlinear dielectric and birefringence relaxation 281—283
Electric fields see "Strong and Weak electric fields"
Electric polarization, nonlinear dielectric and birefringence relaxation 281—283
Electron capture, laser photoelectron spectroscopy, hydrogen and deuterium molecules 9—11
Electron kinetic energy, hydrogen molecules, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy 12—19
Elser, V. 131(41) 201(41) 231
Endoh, M. 84(206) 123
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation 634—637
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation, right-hand side operators 635 657—658
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, variance of energy diffusion 663—664
Energy diffusion equation, crossover between IHD/VLD regimes, Fokker — Planck equation 635—637
Energy diffusion equation, crossover between IHD/VLD regimes, Fokker — Planck equation, right-hand side operators 635 657—658
Energy diffusion equation, crossover between IHD/VLD regimes, Green's function of 638—639
Energy diffusion equation, crossover between IHD/VLD regimes, Green's function of, proof 659—663
Energy diffusion equation, crossover between IHD/VLD regimes, variance of energy 663—664
Energy diffusion equation, Klein — Kramers equation, small viscosity model, alternative derivation 558—561
Energy diffusion equation, Klein — Kramers equation, small viscosity model, phase variable averaging 538
Energy diffusion equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover function, proof 695—696 717—718
Energy diffusion equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, very low damping (VLD) limits 695—698
Energy distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation 639—646
Energy-phase variables, Klein — Kramers equation, small viscosity model 532—535
England, W.B. 93(244) 124
Engleman, R. 132(56) 232
Equilibrium correlation function, dielectric relaxation in cubic potential 441
Equilibrium correlation function, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation 354—356
Equilibrium correlation function, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, linear response theory 349
Equilibrium correlation function, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model 418—425
Equilibrium correlation function, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models 308—317
Equilibrium correlation function, relaxation time, linear response 465—468
Equilibrium distribution function, orientational relaxation, rotational diffusion model 300
Equipartition theorem, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times 433—439
Escape rate calculations, Brownian motion principles 492—493
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, axial symmetry calculation 715—716
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, crossover function proof 717—718
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, divergence of escape rates 706—709
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, crossover high damping formulas 690—694
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, IHD divergence for small departures 681—690
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, notation 675—681
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, theoretical background 674—675
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, VLD limit applications 694—706
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, kinetic equation derivations 710—712
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, partition function, steepest descent evaluation 712—715
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, energy diffusion method 695—698
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, uniaxial perturbations 703—706 725—740
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, uniaxial/LD crossovers 698—703 718—725
Escape rate calculations, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor expression from TST 632—634
Escape rate calculations, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula 590—593
Escape rate calculations, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins 594—598
Escape rate calculations, Kramers reaction rate theory, Klein — Kramers equation, linearized solution 527
Escape rate calculations, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations 527—531
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations 610—626
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, adjoint Fokker — Planck operator and differential equation 613—617
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, boundary layer approximation 629—630
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, boundary layer derivation and solution 630—631
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, line integral, Stokes' expression 619—620
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, stretching transformation 620—623
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, uniform asymptotic expression 617—619
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, weak transverse field rate, evaluation 624—625
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution 745—749
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, integral expression of escape time 743—745
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, principles 741—743
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, series expression for summit time 752—753
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, uniaxial anisotropy explicit expression 753—758
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, zero-frequency limit recurrence relations 749—752
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 574—575
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) calculation 575—578
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particle relaxation 566
Escape rate calculations, Kramers reaction rate theory, small viscosity model, very-low damping 538—541
Escape rate calculations, Kramers reaction rate theory, validity range 497—501
Eskin, L.D. 282(27) 283(27—28) 286—287(27—28) 288(27) 309(27—28) 311(27) 315(28) 316(27) 336(27) 338(68) 478—479
Eslami, M.H. 94(257) 124
Etchpare, J. 403(94) 480
Euler — Langevin equation, dielectric and birefringence relaxation 461—462
Euler — Langevin equation, orientational relaxation, rotational diffusion model 294—300
Evans, M.W. 462(139) 481
Evolution matrix, nonadiabatic transitions, time-dependent level crossings 183—188
Excited-atom distribution, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation 22—23
Exponential potential models, nonadiabatic transitions, curve crossings 131
Exponential potential models, nonadiabatic transitions, noncurve crossings 169—172
Exponential potential models, nonadiabatic transitions, noncurve crossings, attractive model 178—181
Exponential potential models, nonadiabatic transitions, noncurve crossings, repulsive model 175—178
Exponential potential models, nonadiabatic transitions, noncurve crossings, threshold effects 181—182
Exponential potential models, nonadiabatic transitions, time-dependent molecular control 224—229
Eyler, E.E. 10(76) 119
Ezzir, A. 674(86) 764
Farkas, L. 519(43) 521(43) 763
Farman, J.C. 71(162) 122
Farrer, R.A. 246—247(22) 257(22 53—54) 271—272
Fast-phase variables, Klein — Kramers equation, small viscosity model 532—535
Fayad, N.K. 43(141—142) 121
Fayer, M.D. 246(27) 271
Fazio, D.D. 162(88) 233
Featurier, N. 93(246—248) 124
Fedoriuk, M.V. 162(85) 233
Fermi, E. 504(38) 692(38) 763
Ferromagnetic particles see also "Single-domain ferromagnetic particles"
Ferromagnetic particles, rotational Brownian motion, Kramers reaction rate theory 561—566
Ferromagnetic resonance angular frequency, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes 691—694
Ferromagnetic resonance angular frequency, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossover 721—723
Feshbach, H. 732(81) 638—639(81) 644—645(81) 764
Field, R.W. 124
Fifth-order Raman spectroscopy 256—266
Fifth-order Raman spectroscopy, intermolecular vibrations 261—264
Fifth-order Raman spectroscopy, intramolecular vibrations 264—265
Fifth-order Raman spectroscopy, noisy light 266
Fifth-order Raman spectroscopy, principles of 257—260
Filevich, A. 10(63) 119
Final value theorem, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations 751—752
First passage time (FPT) calculations see also "Mean first passage times (MFPT)"
First passage time (FPT) calculations, Kramers reaction rate theory, background 493
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime 610—626
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, adjoint Fokker — Planck operator and differential equation 613—617
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, boundary layer approximation 629—630
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, boundary layer derivation and solution 630—631
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, line integral, Stokes' expression 619—620
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, line integral, Stokes' expression, derivation 627—628
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, stretching transformation 620—623
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, uniform asymptotic expression 617—619
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, weak transverse field rate, evaluation 624—625
First passage time (FPT) calculations, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy 571—575
First passage time (FPT) calculations, Kramers reaction rate theory, small viscosity model 541—543
First-order solutions, nonlinear dielectric and birefringence relaxation, perturbation solutions 362—364
Fischer, E.W. 245(16) 271
Fischer, I. 84(208) 123
Fischer, S.F. 254(48) 272
Fleming, G.R. 236(4—5) 248(28) 257(66—70) 260(66) 261(66 68—69) 262(70 97—98) 263(98) 265(66—67 98) 266(67 98) 270(97) 270—273
Flesch, R. 71(174) 122
Floquet theory, molecular control, time-dependent external fields 214—229
Floquet theory, molecular control, time-dependent external fields, exponential nonadiabatic transition 224—229
Floquet theory, molecular control, time-dependent external fields, Landau — Zener nonadiabatic transition 215—219
Floquet theory, molecular control, time-dependent external fields, laser field control 214—229
Floquet theory, molecular control, time-dependent external fields, Rosen — Zener nonadiabatic transition 219—224
Floquet theory, molecular control, time-dependent external fields, theoretical background 206—214
Floquet theory, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response 399—401
Floudas, G. 245(18) 271
Fluctuation-dissipation theorem, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation 639
Ðåêëàìà