Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117
Prigogine I., Rice S.A. — Advances in chemical physics. Volume 117



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Advances in chemical physics. Volume 117

Àâòîðû: Prigogine I., Rice S.A.

Àííîòàöèÿ:

Providing the chemical physics field with a forum for critical, authoritative evaluations in every area of the discipline, the latest volume of Advances in Chemical Physics continues to provide significant, up-to-date chapters written by internationally recognized researchers.

This volume is essentially devoted to helping the reader obtain general information about a wide variety of topics in chemical physics. Advances in Chemical Physics, Volume 117 includes chapters addressing laser photoelectron spectroscopy, nonadiabatic transitions due to curve crossings, multidimensional raman spectroscopy, birefringence and dielectric relaxation in strong electric fields, and crossover formulae for Kramers Theory of thermally activated escape rates.



ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 831

Äîáàâëåíà â êàòàëîã: 03.08.2014

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Demoncy, N.      626(77) 764
DeMott, D.C.      266(105) 273
Depolarized correlation function, coherent anti-Stokes Raman scattering (CARS), intramolecular vibrations      242—243
Deschenes, L.A.      257(54) 272
Deuterium molecules, resonance-enhanced multiphoton ionization (REMPI) spectroscopy      9—34
Deuterium molecules, resonance-enhanced multiphoton ionization (REMPI) spectroscopy, (3 + 1 REMPI)      23—28
Diabatic coupling techniques, nonadiabatic transitions, curve crossings, multidimensional problems      165—168
Diabatic potentials, noncurve crossing, nonadiabatic transitions, attractive potential model      178—181
Diabatic potentials, noncurve crossing, nonadiabatic transitions, exponential potential model      169—172
Diabatic potentials, time-dependent level crossings, nonadiabatic transitions      189—201
Diabatic potentials, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems      138—151
Diabatic potentials, two-state curve crossing, nonadiabatic transitions, multichannel processes      160—161
Diatomic radicals, laser photoelectron spectroscopy      35—81
Diatomic radicals, laser photoelectron spectroscopy, CIO radical      70—81
Diatomic radicals, laser photoelectron spectroscopy, NH radical      59—70
Diatomic radicals, laser photoelectron spectroscopy, OH radical      35—42
Diatomic radicals, laser photoelectron spectroscopy, SH radical      42—59
Diatomic system, nonadiabatic transitions, multichannel curve crossings      152—161
Dick, B.      237(8) 242(8) 270
Dielectric relaxation, ac field responses      289—291
Dielectric relaxation, extended rotational diffusion model, strong dc electric field      417—425
Dielectric relaxation, Fourier series expansion      465—472
Dielectric relaxation, inertial effects, linear response      416—439
Dielectric relaxation, inertial effects, linear response, free rotation equation of motion      419—425
Dielectric relaxation, inertial effects, linear response, general equations      417—419
Dielectric relaxation, Kerr effect relaxation, linear response      428—429
Dielectric relaxation, Kramers reaction rate theory, Klein — Kramers equation, velocity distribution      522
Dielectric relaxation, linear integral expression      465—468
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field      358—373
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, dispersion plots      368—373
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, equilibrium and first-order solutions, matrix continued fractions      362—364
Dielectric relaxation, perturbation solutions, weak electric field, superimposition on strong dc bias field, second-order solutions      364—368
Dielectric relaxation, rotational Brownian motion, Kramers reaction rate theory      566—569
Dielectric relaxation, rotational diffusion, mean field potential, cubic potential molecules      439—441
Dielectric relaxation, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      442—446
Dielectric relaxation, spectra and relaxation times      429—439
Dielectric relaxation, Stratonovich equation, proof of      461—465
Dielectric relaxation, strong electric fields, nonstationary ac response      394—401
Dielectric relaxation, strong electric fields, one-dimensional relaxation models      309—317
Dielectric relaxation, strong electric fields, polar and polarizable molecules      382—394
Dielectric relaxation, strong electric fields, research background      277—279
Dielectric relaxation, strong electric fields, rigid polar molecules      373—382
Dielectric relaxation, superparamagnetic particles      446—460
Dielectric relaxation, superparamagnetic particles, strong dc field, Langevin equation      447—450
Dielectric relaxation, superparamagnetic particles, transient nonlinear response      450—456
Dielectric relaxation, superparamagnetic particles, uniaxial particles, ac/dc bias magnetic fields      456—459
Diez-Rojo, T.      72(193) 122
Differential-recurrence equations, dielectric and birefringence relaxation      281—283
Differential-recurrence equations, dielectric and birefringence relaxation, strong dc electric fields      319—330
Differential-recurrence equations, dielectric relaxation in cubic potential      439—441
Differential-recurrence equations, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field      350—351
Differential-recurrence equations, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      405—412
Differential-recurrence equations, moment systems, continued fraction approach      303—307
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, first-order perturbation solutions      363—364
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, second-order perturbation solutions      366—368
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, polar and polarizable molecules      385—394
Differential-recurrence equations, nonlinear dielectric and birefringence relaxation, superimposed ac/dc electric fields, rigid polar molecules      374—382
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields      331—347
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, induced dipole step-on response      336—340
Differential-recurrence equations, nonlinear dielectric and Kerr effect relaxation, strong dc electric fields, permanent dipole step-on response      340—343
Differential-recurrence equations, rotational diffusion, mean field potential, matrix continued fractions, complex susceptibility      442—446
Differential-recurrence equations, superparamagnetic particle relaxation, transient nonlinear response      451—456
Differential-recurrence equations, superparamagnetic particle relaxation, uniaxial potential      457—460
Diffusion coefficients, intermediate-to-high damping (IHD) regimes, Kramers reaction rate theory, linearized Klein — Kramers equation, potential barrier summit      523—524
Diffusion coefficients, Kramers reaction rate theory, Klein — Kramers equation      511—512
Diffusion coefficients, Kramers reaction rate theory, Klein — Kramers equation, small viscosity model, phase variable averaging      538
Diffusion matrix, Kramers reaction rate theory, intermediate-to-high damping (IHD) regime, Langer's treatment of      583—588
Dillon, M.A.      86(233) 123
Dimensionless parameters, dielectric relaxation in cubic potential      441
Dimensionless parameters, Kerr effect relaxation, molecular hyperpolarizability, nonlinear step-on response      406—412
Dimensionless parameters, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, nonaxial formula divergence for small axial symmetry departures      681—690
Dimensionless parameters, Kramers reaction rate theory, Klein — Kramers equation, range of validity, IHD/VLD regimes      549—550
Dimensionless parameters, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particles      564—566
Dimensionless parameters, nonlinear Brownian relaxation, strong electric fields, rigid polar molecules, superimposed ac/dc electric fields      374—382
Dimensionless parameters, superparamagnetic particle relaxation      447
Dimensionless parameters, time-dependent level crossings, nonadiabatic transitions      190—201
Dimensionless parameters, two-state curve crossing, nonadiabatic transitions, Landau — Zener — Stueckelberg problems      138—151
Dimethyl sulfide, laser photoelectron spectroscopy      113—116
Dipole-dipole interactions, coherent anti-Stokes Raman scattering (CARS), intermolecular vibrations      245—246
Dirac delta function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function, energy diffusion equation, proof      660—663
Dirac delta function, Kramers reaction rate theory, rotational Brownian motion, dielectric relaxation      567—569
Dirac delta function, orientational relaxation, rotational diffusion model      294—300
Dissociative recombination, laser photoelectron spectroscopy, (1 + 1' REMPI), hydrogen molecules      32—34
Dissociative recombination, laser photoelectron spectroscopy, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation      21—23
Dissociative recombination, laser photoelectron spectroscopy, hydrogen and deuterium molecules      9—11
Dixit, S.N.      15(90) 17(90) 21(90) 38(126) 120—121
Dixon, R.N.      93(240) 99(272—273 277—280) 101(277—278) 108(292) 124—125
Dobber, M.R.      81—83(203) 93—95(203) 100(282) 123 125
Docker, M.P.      40(130) 121
Doege, G.      254(47) 272
Doering, J.P.      84(218) 123
Doering, W.      489(17) 581(17) 762
Domcke, W.      4(12) 117
Donaldson, D.J.      71(171 173 175) 72(171) 84(219) 122—123
Doob, J.L.      492(23) 521(23) 762
Dormann, J.L.      489(59) 566(52) 574(59) 674(52) 707(52) 763—764
Double well potential model, Brownian motion principles      492—493
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, bridging formula      650—655
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fourier transforms in Wiener — Hopf method      669—674
Double well potential model, Kramers reaction rate theory, crossover between IHD/VLD regimes, population proof      672—674
Double well potential model, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy      572—575
Double well potential model, Landau — Zener nonadiabatic transition, time-dependent molecular control      216—219
Douglas, A.E.      36(117) 66(161) 84(214) 97(262—263) 99(262) 120 122—124
Douglas, J.E.      125
Drabe, K.E.      5(16) 8(16) 117
Dressier, K.      21(93) 120
Dreyfus, C.      245(17) 271
Drift coefficients, Kramers reaction rate theory, Klein — Kramers equation      511—512
Du, W.      245(17) 271
Dugan, M.A.      266(101—102) 273
Duignan, M.T.      72—74(195) 122
Duncan, A.B.E.      86(230) 123
Dunlavey, S.J.      43(141—142) 121
Duppen, K.      257(58 64—65 82—84) 258(82) 261(64—65 83) 272—273
Durie, R.A.      71(185) 122
Dyke, J.M.      43(141—142) 71(166) 74(166) 76(200) 81(166) 121—123
Dynamic Kerr effect, ac field responses      291—293
Dynamic Kerr effect, arbitrary strength as factor      461—462
Dynamic Kerr effect, hyperpolarizabilities of molecules, linear ac response and after effect solution      412—416
Dynamic Kerr effect, hyperpolarizabilities of molecules, nonlinear step-on response      401—412
Dynamic Kerr effect, inertial effects, dielectric and birefringence relaxation, J diffusion model      417
Dynamic Kerr effect, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      437—439
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field      347—358
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, activation law behavior      356—358
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, correlation time integral representation      354—356
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, dipole moment evaluations      351—353
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, linear response theory      347—349
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, relaxation function and times, evaluation of      353—354
Dynamic Kerr effect, linear response to weak ac field superimposed on strong dc bias field, transient and relaxation times      350—351
Dynamic Kerr effect, orientational relaxation, rotational diffusion model      298—300
Dynamic Kerr effect, perturbation solution      358—373
Dynamic Kerr effect, perturbation solution, matrix continued fractions      362—364
Dynamic Kerr effect, perturbation solution, second-order exact solutions      364—368
Dynamic Kerr effect, Smoluchowski equation      279—283
Dynamic Kerr effect, strong dc electric field, exact solutions      330—347
Dynamic Kerr effect, strong dc electric field, exact solutions, step-on response, induced dipole effect      336—340
Dynamic Kerr effect, strong dc electric field, exact solutions, step-on response, permanent dipole effect      340—343
Dynamic Kerr effect, strong dc electric field, one-dimensional model      307—317
Dynamic Kerr effect, strong dc electric field, problem formulation and solution      317—330
Dynamic Kerr effect, strong dc electric field, relaxation spectra evaluation      343—347
Dynamic Kerr effect, strong dc electric field, relaxation time/spectra evaluation      340—343
Dynamic Kerr effect, strong dc electric field, research background      277—279
Dynamic Kerr effect, strong dc electric field, step-on response evaluation      336—340
Dynamic Kerr effect, weak ac field on dc bias field      347—358
Dynamic Kerr effect, weak ac field on dc bias field, correlation time integral representation      354—356
Dynamic Kerr effect, weak ac field on dc bias field, induced dipole effect evaluation      350—351
Dynamic Kerr effect, weak ac field on dc bias field, linear response theory      347—349
Dynamic Kerr effect, weak ac field on dc bias field, permanent dipole moment      351—353
Dynamic Kerr effect, weak ac field on dc bias field, relaxation functions/times evaluation      353—354
Ebata, T.      36(120—121) 38(120—121) 120
Echo spectroscopy, Raman-echo spectroscopy      246—256
Echo spectroscopy, Raman-echo spectroscopy, liquids      251—256
Echo spectroscopy, Raman-echo spectroscopy, solids and gases      251
Echo spectroscopy, Raman-echo spectroscopy, wave-mixing pathways      249—250
Edmonds, A.R.      299(58) 479
Edwards, A.K.      109(295) 125
Eigenvalue problem, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Langer's treatment of      585—588
Eigenvalue problem, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, left eigenvector      585 598—600
Eikema, K.S.E.      29(98) 120
Einstein calculation techniques, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation      639
Einstein calculation techniques, Kramers reaction rate theory, Klein — Kramers equation, probability density, state space evolution      517—520
Einstein calculation techniques, Kramers reaction rate theory, low-damping (LD) regime, FPT escape rate calculations, adjoint Fokker — Planck operator, differential equation      615—617
Einstein, A.      490(10) 505(10) 510(10) 761(10) 762
Eland, J.H.D.      6(29) 117
Electric birefringence function, nonlinear dielectric and birefringence relaxation      281—283
Electric fields      see "Strong and Weak electric fields"
Electric polarization, nonlinear dielectric and birefringence relaxation      281—283
Electron capture, laser photoelectron spectroscopy, hydrogen and deuterium molecules      9—11
Electron kinetic energy, hydrogen molecules, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy      12—19
Elser, V.      131(41) 201(41) 231
Endoh, M.      84(206) 123
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation      634—637
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, Fokker — Planck equation, right-hand side operators      635 657—658
Energy action variables, Kramers reaction rate theory, crossover between IHD/VLD regimes, variance of energy diffusion      663—664
Energy diffusion equation, crossover between IHD/VLD regimes, Fokker — Planck equation      635—637
Energy diffusion equation, crossover between IHD/VLD regimes, Fokker — Planck equation, right-hand side operators      635 657—658
Energy diffusion equation, crossover between IHD/VLD regimes, Green's function of      638—639
Energy diffusion equation, crossover between IHD/VLD regimes, Green's function of, proof      659—663
Energy diffusion equation, crossover between IHD/VLD regimes, variance of energy      663—664
Energy diffusion equation, Klein — Kramers equation, small viscosity model, alternative derivation      558—561
Energy diffusion equation, Klein — Kramers equation, small viscosity model, phase variable averaging      538
Energy diffusion equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover function, proof      695—696 717—718
Energy diffusion equation, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, very low damping (VLD) limits      695—698
Energy distribution function, Kramers reaction rate theory, crossover between IHD/VLD regimes, Wiener — Hopf integral equation      639—646
Energy-phase variables, Klein — Kramers equation, small viscosity model      532—535
England, W.B.      93(244) 124
Engleman, R.      132(56) 232
Equilibrium correlation function, dielectric relaxation in cubic potential      441
Equilibrium correlation function, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, correlation time, integral representation      354—356
Equilibrium correlation function, dynamic Kerr effect, weak ac electric field steady-state response superimposed on dc bias field, linear response theory      349
Equilibrium correlation function, inertial effects, dielectric and birefringence relaxation, extended rotational diffusion model      418—425
Equilibrium correlation function, nonlinear Brownian relaxation, strong electric fields, one-dimensional relaxation models      308—317
Equilibrium correlation function, relaxation time, linear response      465—468
Equilibrium distribution function, orientational relaxation, rotational diffusion model      300
Equipartition theorem, inertial effects, dielectric and birefringence relaxation, spectra and relaxation times      433—439
Escape rate calculations, Brownian motion principles      492—493
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, axial symmetry calculation      715—716
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, crossover function proof      717—718
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, divergence of escape rates      706—709
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, crossover high damping formulas      690—694
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, IHD divergence for small departures      681—690
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, notation      675—681
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, theoretical background      674—675
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, interpolation formulas, VLD limit applications      694—706
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, kinetic equation derivations      710—712
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, partition function, steepest descent evaluation      712—715
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, energy diffusion method      695—698
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, uniaxial perturbations      703—706 725—740
Escape rate calculations, Kramers reaction rate theory, axial/nonaxial symmetric potential escape rates, single domain ferromagnetic particles, VLD limit applications, uniaxial/LD crossovers      698—703 718—725
Escape rate calculations, Kramers reaction rate theory, crossover between IHD/VLD regimes, prefactor expression from TST      632—634
Escape rate calculations, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, Kramers' formula as Langer's formula      590—593
Escape rate calculations, Kramers reaction rate theory, intermediate-to-high damping (IHD) limit, magnetic spins      594—598
Escape rate calculations, Kramers reaction rate theory, Klein — Kramers equation, linearized solution      527
Escape rate calculations, Kramers reaction rate theory, Klein — Kramers equation, reaction rate calculations      527—531
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations      610—626
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, adjoint Fokker — Planck operator and differential equation      613—617
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, boundary layer approximation      629—630
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, boundary layer derivation and solution      630—631
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, line integral, Stokes' expression      619—620
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, stretching transformation      620—623
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, uniform asymptotic expression      617—619
Escape rate calculations, Kramers reaction rate theory, low-damping (LD) regime, first passage time escape rate calculations, weak transverse field rate, evaluation      624—625
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, Fokker — Planck equation, zero-frequency limit, delta function orientation distribution      745—749
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, integral expression of escape time      743—745
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, principles      741—743
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, series expression for summit time      752—753
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, uniaxial anisotropy explicit expression      753—758
Escape rate calculations, Kramers reaction rate theory, rigid Brownian rotators, bistable potential Green function time evolution, zero-frequency limit recurrence relations      749—752
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy      574—575
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, mean first passage times (MFPT) calculation      575—578
Escape rate calculations, Kramers reaction rate theory, rotational Brownian motion, single domain ferromagnetic particle relaxation      566
Escape rate calculations, Kramers reaction rate theory, small viscosity model, very-low damping      538—541
Escape rate calculations, Kramers reaction rate theory, validity range      497—501
Eskin, L.D.      282(27) 283(27—28) 286—287(27—28) 288(27) 309(27—28) 311(27) 315(28) 316(27) 336(27) 338(68) 478—479
Eslami, M.H.      94(257) 124
Etchpare, J.      403(94) 480
Euler — Langevin equation, dielectric and birefringence relaxation      461—462
Euler — Langevin equation, orientational relaxation, rotational diffusion model      294—300
Evans, M.W.      462(139) 481
Evolution matrix, nonadiabatic transitions, time-dependent level crossings      183—188
Excited-atom distribution, (3 + 1) resonance-enhanced multiphoton ionization (REMPI) spectroscopy, hydrogen molecule photodissociation      22—23
Exponential potential models, nonadiabatic transitions, curve crossings      131
Exponential potential models, nonadiabatic transitions, noncurve crossings      169—172
Exponential potential models, nonadiabatic transitions, noncurve crossings, attractive model      178—181
Exponential potential models, nonadiabatic transitions, noncurve crossings, repulsive model      175—178
Exponential potential models, nonadiabatic transitions, noncurve crossings, threshold effects      181—182
Exponential potential models, nonadiabatic transitions, time-dependent molecular control      224—229
Eyler, E.E.      10(76) 119
Ezzir, A.      674(86) 764
Farkas, L.      519(43) 521(43) 763
Farman, J.C.      71(162) 122
Farrer, R.A.      246—247(22) 257(22 53—54) 271—272
Fast-phase variables, Klein — Kramers equation, small viscosity model      532—535
Fayad, N.K.      43(141—142) 121
Fayer, M.D.      246(27) 271
Fazio, D.D.      162(88) 233
Featurier, N.      93(246—248) 124
Fedoriuk, M.V.      162(85) 233
Fermi, E.      504(38) 692(38) 763
Ferromagnetic particles      see also "Single-domain ferromagnetic particles"
Ferromagnetic particles, rotational Brownian motion, Kramers reaction rate theory      561—566
Ferromagnetic resonance angular frequency, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, crossover formulas, high damping regimes      691—694
Ferromagnetic resonance angular frequency, Kramers reaction rate theory, axial/nonaxial symmetric potentials, escape rates, uniaxial/LD crossover      721—723
Feshbach, H.      732(81) 638—639(81) 644—645(81) 764
Field, R.W.      124
Fifth-order Raman spectroscopy      256—266
Fifth-order Raman spectroscopy, intermolecular vibrations      261—264
Fifth-order Raman spectroscopy, intramolecular vibrations      264—265
Fifth-order Raman spectroscopy, noisy light      266
Fifth-order Raman spectroscopy, principles of      257—260
Filevich, A.      10(63) 119
Final value theorem, Kramers reaction rate theory, rigid Brownian rotator escape times, bistable potential, Green function time evolution, zero frequency limit, recurrence relations      751—752
First passage time (FPT) calculations      see also "Mean first passage times (MFPT)"
First passage time (FPT) calculations, Kramers reaction rate theory, background      493
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime      610—626
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, adjoint Fokker — Planck operator and differential equation      613—617
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, boundary layer approximation      629—630
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, boundary layer derivation and solution      630—631
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, line integral, Stokes' expression      619—620
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, line integral, Stokes' expression, derivation      627—628
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, stretching transformation      620—623
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, uniform asymptotic expression      617—619
First passage time (FPT) calculations, Kramers reaction rate theory, low-damping (LD) regime, weak transverse field rate, evaluation      624—625
First passage time (FPT) calculations, Kramers reaction rate theory, rotational Brownian motion, axial symmetry, magnetocrystalline anisotropy      571—575
First passage time (FPT) calculations, Kramers reaction rate theory, small viscosity model      541—543
First-order solutions, nonlinear dielectric and birefringence relaxation, perturbation solutions      362—364
Fischer, E.W.      245(16) 271
Fischer, I.      84(208) 123
Fischer, S.F.      254(48) 272
Fleming, G.R.      236(4—5) 248(28) 257(66—70) 260(66) 261(66 68—69) 262(70 97—98) 263(98) 265(66—67 98) 266(67 98) 270(97) 270—273
Flesch, R.      71(174) 122
Floquet theory, molecular control, time-dependent external fields      214—229
Floquet theory, molecular control, time-dependent external fields, exponential nonadiabatic transition      224—229
Floquet theory, molecular control, time-dependent external fields, Landau — Zener nonadiabatic transition      215—219
Floquet theory, molecular control, time-dependent external fields, laser field control      214—229
Floquet theory, molecular control, time-dependent external fields, Rosen — Zener nonadiabatic transition      219—224
Floquet theory, molecular control, time-dependent external fields, theoretical background      206—214
Floquet theory, nonlinear Brownian relaxation, strong electric fields, nonstationary ac response      399—401
Floudas, G.      245(18) 271
Fluctuation-dissipation theorem, Kramers reaction rate theory, crossover between IHD/VLD regimes, Green's function of energy diffusion equation      639
1 2 3 4 5 6 7 8 9 10 11
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå