|
|
 |
| Результат поиска |
Поиск книг, содержащих: Euler — Poincare formula
| Книга | Страницы для поиска | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 201.B, F | | Graham R.L., Grotschel M., Lovasz L. — Handbook of combinatorics (vol. 2) | 1847, 1863 | | Jones G.A., Singerman D. — Complex Functions: An Algebraic and Geometric Viewpoint | 196 | | Bollobas B. — Modern Graph Theory | 155, 156 | | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 1 | 1171 | | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 3 | 1171 | | Ito K. — Encyclopedic Dictionary of Mathematics | 201.B, 201.F | | Kline M. — Mathematical Thought from Ancient to Modern Times, Vol. 2 | 1171 | | Grünbaum B. — Convex Polytopes | see “Euler’s equation” | | Prasolov V.V., Tikhomirov V.M. — Geometry | 141 | | Greub W.H. — Linear Algebra | 180 | | Pommaret J.F. — Systems of partial differential equations and Lie pseudogroups | 1.4.9 | | Bjorner A. — Oriented Matroids | 199 | | Bjorner A., Vergnas M., Sturmfels B. — Oriented Matroids, Second edition (Encyclopedia of Mathematics and its Applications) | 199 | | Pier J.-P. — Mathematical Analysis during the 20th Century | 262 | | Greub W., Halperin S., Vanstone R. — Connections, curvature, and cohomology. Volume 1 | 11 | | Nash C., Sen S. — Topology and geometry for physicists | 106 |
|
|