|
|
 |
| Результат поиска |
Поиск книг, содержащих: Inertial system
| Книга | Страницы для поиска | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 271.D 359 | | Zeidler E. — Nonlinear Functional Analysis and its Applications IV: Applications to Mathematical Physic | 28, 30, 699ff, 702ff, 782 | | Greiner W. — Classical mechanics. Point particles and relativity | 140, 362 | | Ito K. — Encyclopedic Dictionary of Mathematics | 271.D, 359 | | Stephani H. — Relativity: an introduction to special and general relativity | 1 | | Kleppner D., Kolenkow R. — An introduction to mechanics | 55, 340, 455 | | Landau L.D., Lifshitz E.M. — The classical theory of fields | 1 | | Ehlers J. (ed.) — Relativity theory and astrophysics. 1. Relativity and cosmology | 221 | | Falcke H. (ed.), Hehl F.W. (ed.) — The galactic black hole: lectures on general relativity and astrophysics | 8, 12 | | Konopleva N.P., Popov V.N. — Gauge Fields | 12, 97—98 | | Griffits D.J. — Introductions to electrodynamics | 477 | | Ashby N., Miller S.C. — Principles of modern physics | 48 | | Greiner W. — Classical mechanics. Systems of particles and hamiltonian dynamics | 3 | | Zeidler E. — Oxford User's Guide to Mathematics | 854 | | Sexl R., Urbantke H.K. — Relativity, Groups, Particles. Special Relativity and Relativistic Symmetry in Field and Particle Physics | 1 | | Moeller C. — The theory of relativity | 1 |
|
|