|
|
 |
| Результат поиска |
Поиск книг, содержащих: Stable process
| Книга | Страницы для поиска | | Falconer K. — Fractal Geometry. Mathematical Foundations and applications | 248—250 | | Ito K. — Encyclopedic Dictionary of Mathematics. Vol. 2 | 5.F | | Falconer K. — Fractal Geometry: Mathematical Foundations and Applications | 271—273, 275 | | Loeve M. — Probability Theory (part 2) | 350 | | Gut A. — Stopped Random Walks: Limit Theorems and Applications | 151, 153, 173 (see also “Weak convergence”) | | Marcus M., Rosen J. — Markov Processes, Gaussian Processes and Local Times | 141 | | Ito K. — Encyclopedic Dictionary of Mathematics | 5.F | | Kannan D. (ed.), Lakshmikantham V. (ed.) — Handbook of stochastic analysis and applications | 21 | | Shanbhag D.N. (ed.), Rao C.R. (ed.) — Stochastic Processes - Modelling and Simulation | 390 | | Bingham N.H., Goldie C.M., Teugels J.L. — Regular variation | 359, 379, 420 (see also “Stable subordinator”) | | Mason R.L., Gunst R.F., Hess J.L. — Statistical Design and Analysis of Experiments, with Applications to Engineering and Science | 404 | | Blumenthal R.K., Getoor R.M. — Markov processes and potential theory | 293 | | Revuz D., Yor M. — Continuous martingales and Brownian motion | 116 | | Breuer H.-P., Petruccione F. — The Theory of Open Quantum Systems | 52 | | Falconer K. — Fractal geometry: mathematical foundations and applications | 271, 271—273, 275 |
|
|