|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Gut A. — Stopped Random Walks: Limit Theorems and Applications |
|
|
Ïðåäìåòíûé óêàçàòåëü |
148 157 171—176 177
149 154—157 164 172—176 178
, 148 155 164 176
-convergence theorem 166
Ahlberg 6 119
Aleskeviciene 87
Anderson 61
Anscombe 3 8 15 42
Anscombe — Donsker invariance principle 147—149
Anscombe, condition 15 44
Anscombe’s theorem 3 4 15—16 36 44 56 85 137 147 151
Anscombe’s theorem, -analogue of 33
Anscombe’s theorem, multidimensional 150
Arjas 53
Asmussen 4 48 62 109 125
Athreya 53 61
Barlow 122—124
Basu 152
Baum 42 43
Belyayev 122
Berbee 107
Berry 61
Bickel 62
Billingsley 7 18 149 150 152 153 160 166 169 171 174 176
Bingham 103 156 178
Binomial process 1
Blackwell 8 23 26 27 44 52 61 76 87 88 90
Breiman 7
Brown 7
Brownian motion see “Wiener process”
Burkholder 20 29 167 169 170
Carlsson 62 89 100
Central limit theorem 1 7 8 15 17 18 29 36 38 55 61 72 85 92—96 102 108 111—114 130 137 147 168—169
Central limit theorem, moment convergence in 18 168—169
Central limit theorem, multidimensional 117
Chang 33 163
Choquet 53
Chow 7 17 23 24 33 34 67 92—95 103 106 107 132 137 142—144 146
Chromatography 6 118—121
Chung 4 15 62 65 73 90 100 165 166 168 170
Cinlar 4 48 62
Cluster set see “Limit points set
Combinatorial methods 4 46
composition 149 151 176
Continuity of function(al)s 164 174—175
Continuity of function(al)s, composition 149 151
Continuity of function(al)s, first passage time 156
Continuity of function(al)s, inversion 155
Continuity of function(al)s, largest jump 154
Continuity of function(al)s, projections 150 156 178
Continuity of function(al)s, supremum 155
Continuous mapping theorem 149 150 154 163 174—175
Convergence, almost sure (a.s.) 4 9 10—14 17 41 44 54 67 70 83—85 97 130 135 145 166 175
Convergence, complete 9 42—43 103
Convergence, in 4 9 17 37 39 41 44 166
Convergence, in distribution 4 9 10 15—17 36 55 58 72 85—87 98 102 111—112 115—117 130—131 137—138 166 179
Convergence, in probability 4 9 10—13 39 166 176
Convergence, in r-mean 4 (see also “Convergence in
Convergence, moment 4 9 17—20 36—39 54 56 57 59 87 89 92—97 98—102 106 108 109—114 130—132 143—145 165—167
Convergence, of finite-dimensional distributions 150 156 171—172
Convergence, of probability measures 171—176 (see also “Weak convergence”)
Convergence, rate 42—44 103—104 131
Convergence, weak see “Weak convergence”
Counters 1 2 124—125
Coupling 53
Cox 106 109 122
Cramer 125
Daley 89
Davis 20 169
De Acosta 177 178
de Groot 23
de Haan 134 180
DENY 53
Doeblin 53
Domain of attraction see “Stable law”
Doney 62 67
Donsker 7 147
Donsker’s theorem 147 149 158 164 172 177
Donsker’s theorem, Anscombe version of 147 162
Doob 21 48 53 54 87 167 168 170
Dynkin 61
Englund 61
Erdos 6 7 42 52 73 85
Erickson 53 61
Esseen 61
Essen 89
Farrell 62
Feller 4 6 24 36 48 52 54 60 61 65 90 134 180
First passage time(s) 2 5—9 22 24 39 50 74—107 108 109—118 132 133 147 151—159 163
First passage time(s), auxiliary 138 139 144
First passage time(s), central limit theorem 56 85 93
First passage time(s), complete convergence 103
First passage time(s), convergence rate 103—104
First passage time(s), excess over the boundary 76 97 overshoot”)
First passage time(s), for the ladder height process 77 81
First passage time(s), law of large numbers 55 83—84 93 105
First passage time(s), law of the iterated logarithm 102—103 163
First passage time(s), momentgenerating function 81
First passage time(s), moments, convergence 55 92—97 106
First passage time(s), moments, finiteness 50 78—81
First passage time(s), overshoot 76 97—102 106
First passage time(s), process 3 5 6 50 55 57 75—107 119
First passage time(s), subadditivity 55 83
First passage time(s), uniform integrability 55 57 90—92 94—95
First passage time(s), weak convergence 151—157
First passage times across general boundaries 7 75 109 133—146 159—161 163
First passage times across general boundaries, central limit theorem 137 144
First passage times across general boundaries, law of large numbers 135—137 143
First passage times across general boundaries, law of the iterated logarithm 145—146 163
First passage times across general boundaries, momentgenerating function 134
First passage times across general boundaries, moments, convergence 143—145
First passage times across general boundaries, moments, finiteness 133—134
First passage times across general boundaries, overshoot 145
First passage times across general boundaries, weak convergence 159—161
Fluctuation theory 4 46
Fuchs 4 65
Functional central limit theorem 147 172 weak”)
Functional limit theorem 7 132 147—164
Gafurov 62
Garsia 61 167
Generalized arc sine distribution 61
Gikhman 151 173
Gnedenko 122
Goldie 103
Grubel 90
Gundy 7
Gut 6 7 22 26 28 34 35 40 43 44 75 76 78 84—86 93—98 100 102 103 107 109 111 113 115 117 119 122 126 127 133 134 136—140 144—146 150 152 153 156 158 161 182
Hall 163
Hartman 41 177—178
Hatori 54
Heath 128
Heyde 73 78 80 81 83 85 86 89 95 132 163
Hogfeldt 158
Hoist 126 127
Horvath 163
Hsiung 17 33 34 92 94 103 132 137 142—144 146 163
Hsu 42 43
Huggins 163
Hunter 62
Iglehart 156 164
Insurance risk theory 1 2 125—126
Invariance principle 147—164 (see also “Functional limit
Invariance principle, almost sure see “Invariance principle strong”
Invariance principle, Anscombe — Donsker 147—149
Invariance principle, strong 7 42 147 161—164 177—178
Invariance principle, weak 7 147—161 175
Inverse relationship 138 146 155
Inverse relationship between partial maxima and first passage times 75 80 85 103 132
Inverse relationship between renewal and counting processes 49 56 75
Jagers 4 48 53
| Janson 6 11 12 28 34 35 69 73 78 82 97 101 107 109 111 113 115 118 122 132 139 140 158
Kac 6 7 73
Kaijser 121
Karamata 180
Katz 42 43
Kemperman 62
Kesten 62
Kiefer 132
Kingman 83
Kolmogorov 14 27 52 84
Ladder, epoch 5 65—66 77—78 98 104—106 129
Ladder, epoch, ascending 8 65
Ladder, epoch, ascending, strong 5 65 68—70 77
Ladder, epoch, ascending, weak 67 70
Ladder, epoch, descending, strong 67
Ladder, epoch, descending, weak 66
Ladder, height 66—67 98 101 129
Ladder, height, first passage times for see “First passage times”
Ladder, height, strong ascending 66 68—69 77
Ladder, method 76 77—78 81 83 87—89 91 93 94—96 97 101 152
Ladder, variable 2 4 26 46 65—67 77
Lai 7 17 28 33 34 59 67 85 91 92 94 100 133 142—144
Lalley 62 87 102
Lamperti 61
Law of Large Numbers 1 8 13—14 17 29 33 37 44 54 70 83—84 92—94 108 109—111 130 135—137
Law of large numbers, convergence rate 42—43
Law of large numbers, converse 27
Law of large numbers, Erdos — Renyi 85
Law of large numbers, martingale proof of 44
Law of large numbers, moment convergence 17—18 44
Law of the iterated logarithm 1 8 9 41—42 43 102—103 108 117 131 147 161—164 177—178
Law of the iterated logarithm, Anscombe version of 42 162
Law of the iterated logarithm, converse 41
Limit points 41 177
Limit points, set of 41—42 162—164 177—178
Lindberger 161 164
Lindvall 53 175
Local limit theorem 87 106
Loeve 11 14 166
Lorden 100 101
Maejima 106 107
Marcinkiewicz 14 19 20 29 44 61 84 110 136 167 169
Martingale 44 53 167—171 178
Martingale, convergence 168
Martingale, moment inequalities see “Moments”
Martingale, optional sampling theorem 21—25 167 170—171
Martingale, reversed 44 168 178
McDonald 53
Meyer 53
Miller 122
Mohan 53 57 61
Moments, boundedness 39 40
Moments, convergence see “Convergence”
Moments, finiteness 24 25—28 49 51 78 79 97 132 133—134 145
Moments, inequalities for martingales 167 169
Moments, inequalities for stopped random walks 20—28
Moments, inequalities for sums of independent random variables 167 168—169
Moments, Marcinkiewicz — Zygmund 19 20 167 169
Mori 107
Nagaev 62
Negative binomial process 47 49 57 59 106
Nerman 100
Neveu 24 168
Ney 53 107
Niculescu 53
Number of renewals 48—49
Number of visits 6 64—65
Number of visits, expected 64—65 90
Nummelin 53
Optional sampling theorem see “Martingale”
Orey 90
Ornstein 4 6 65
Partial maxima 5 7 46 67—73 75 108 128—132 155 159 164
Partial minima 5 67—70 128 132
Plucihska 122
Point, persistent 4 65
Point, possible 4
Point, transient 65
Poisson process 47 48 53 57 59 125 126
Pollard 52 90
Port 6
Prabhu 4 48 65 68 69 73 75 90 109 125 126
Projections 150 171
Projections, continuity of see “Continuity of function(al)s”
Proschan 122—124
Pyke 20 124
Queueing theory 1 2 126
Random change of time 148 151 160 176
Random index 1—9 17 46 68
Random walk 1—7 8 46 62—73 99—100
Random walk, arithmetic 47 65 97 105 107
Random walk, arithmetic with span d 47 63
Random walk, arithmetic, d-arithmetic 47 88 90 95—99
Random walk, Bernoulli 1 47
Random walk, Bernoulli, symmetric 1
Random walk, classification 63—68
Random walk, coin-tossing 1
Random walk, drifting 4 6
Random walk, drifting to 5 7 64—67 70 104 with
Random walk, drifting to 64—67 69 70
Random walk, maximum of see “Partial maxima”
Random walk, minimum of see “Partial minima”
Random walk, nonarithmetic 47 63 65 88 90 95—100 102
Random walk, oscillating 4 6 64 66—68
Random walk, persistent 4 64—65
Random walk, randomly indexed 1—9 (see also “Stopped random walk”)
Random walk, simple 1 63—65 104—106 107
Random walk, simple, symmetric 1 24 35 66
Random walk, stopped see “Stopped random walk”
Random walk, transient 4 6 64—65
Random walk, two-dimensional 3 6 108 109 stopped”)
Random walk, with multidimensional indices 107
Random walk, with positive drift 3 5 73 74—107 108 128—132 133—146 151—157 159—161 163 164
Recurrent even 4
Regularly varying function 53 57 61 87 116 134 155 180—182
Relative compactness 162 —164 178
Reliability theory 1 2 8 123—124
Renewal counting process 2—6 8 9 48—57 68 82 118
Renewal counting process, Berry — Esseen theorem 61
Renewal counting process, central limit theorem 55
Renewal counting process, for random walks with positive drift 82
Renewal counting process, large deviation 62
Renewal counting process, law of large numbers 54
Renewal counting process, law of the iterated logarithm 61
Renewal counting process, momentgenerating function 49
Renewal counting process, moments, convergence 54—57
Renewal counting process, moments, finiteness 49
Renewal counting process, uniform integrability 54—57
Renewal function 5 6 49—53 61 90
Renewal function, extended 89
Renewal measure 63 90
Renewal measure, harmonic 90
Renewal process 1—6 46—62 74 76 82 105 108 113 118 125 152 164
Renewal process, age 60 61
Renewal process, alternating 6 122
Renewal process, arithmetic 47 48 54 66
Renewal process, arithmetic with span d 47
Renewal process, arithmetic, d-arithmetic 47 50 52 53 56—58
Renewal process, coupling proofs 53
Renewal process, delayed 62
Renewal process, integral equation 50 52
Renewal process, lifetime 58 60
Renewal process, lifetime, residual 58—60 61 97
Renewal process, nonarithmetic 47 48 52—54 56—60
Renewal process, pure 62
Renewal process, terminating 62 66
Renewal Theorem 6 8 51—53 61 87—90
Renewal Theorem, Blackwell’s 52 61 90
Renewal theorem, Blackwell’s, random walk analogue 88
Renewal theorem, elementary 5 51 61 89 90
|
|
|
Ðåêëàìà |
|
|
|