|
|
Результат поиска |
Поиск книг, содержащих: Divisor, Cartier
Книга | Страницы для поиска | Oda T. — Convex bodies and algebraic geometry: an introduction to the theory of toric varieties | see “Cartier divisor” | Eisenbud D., Harris J. — The Geometry of Schemes | 117 | Brieskorn E., Knorrer H. — Plane Algebraic Curves | 622 | Shafarevich I.R., Shokurov V.V., Danilov V.I. — Algebraic geometry I: Algebraic curves algebraic. Manifolds and schemes | 255 | Friedlander E.M. (ed.), Grayson D.R. (ed.) — Handbook of K-Theory | 243 | Debarre O. — Higher-Dimensional Algebraic Geometry | 2 | Okonek C., Schneider M., Spindler H. — Vector Bundles on Complex Projective Spaces | 3 | Ueno K., Kato G. — Algebraic Geometry 3: Further Study of Schemes (Translations of Mathematical Monographs Vol. 218) | 42, 43 | Voisin C. — Hodge theory and complex algebraic geometry 2 | 35, 90, 248, 251, 252 | Knutson D. — Algebraic Spaces | 149 | Lewis J.D. — CRM Monograph Series, vol.10: A Survey of the Hodge Conjecture | 48 | Fantechi B., Gottsche L., Illusie L. — Fundamental Algebraic Geometry. Grothendieck's FGA Explained MAg | 247, 257 | Eisenbud D., Harris J. — The geometry of schemes (textbook draft) | 117 | Fantechi B., Kleiman S.L., Illusie L. — Fundamental Algebraic Geometry | 247, 257 |
|
|