|
|
Результат поиска |
Поиск книг, содержащих: Maximum norm
Книга | Страницы для поиска | Hunter J.K., Nachtergaele B. — Applied Analysis | 5 | Bulirsch R., Stoer J. — Introduction to numerical analysis | 184 | Lutkepohl H. — Handbook of Matrices | 103 | Matousek J. — Lectures on Discrete Geometry (some chapters) | see $\ell_\infty$-norm | Grotschel M., Lovasz L., Schrijver A. — Geometric Algorithms and Combinatorial Optimization | 5 | Sagan H. — Advanced Calculus of Real-Valued Functions of a Real Variable and Vector-Valued Functions of a Vector Variable | 207 | Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials | 289 | Kress R., Gehring F.W. — Numerical Analysis | 26, 41 | Hilborn R.C. — Chaos and nonlinear dynamics | 379 | Courant R., Hilbert D. — Methods of Mathematical Physics, Vol. 2 | 769 | Zeidler E. — Nonlinear Functional Analysis and Its Applications: Part 1: Fixed-Point Theorems | 772 | Knuth D.E. — The art of computer programming (vol. 1 Fundаmental algorithms) | 106 | Snyder M.A. — Chebyshev methods in numerical approximation | 3, 4 | Rall L.B. — Automatic Differentiation: Techniques and Applications | 23, 100 | Meurant G. — The Lanczos and conjugate gradient algorithms: from theory to finite precision computations | 249, 251 | Lemm J.M., Meurant G. — Computer Solution of Large Linear Systems | 5, 39, 121, 229, 269 | Young D.M., Gregory R.T. — A Survey of Numerical Mathematics, Volume 2 | 308, 488, 762, see also "Uniform norm of a vector function" | BertsekasD., Tsitsiklis J. — Neuro-Dynamic Programming (Optimization and Neural Computation Series, 3) | 39 | Truss J.K. — Foundations of Mathematical Analysis | 124 | Truss J. — Foundations of mathematical analysis | 124 | J. K. Truss — Foundations of mathematical analysis MCet | 124 |
|
|