Àâòîðèçàöèÿ
Ïîèñê ïî óêàçàòåëÿì
Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials
Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå
Íàøëè îïå÷àòêó? Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter
Íàçâàíèå: Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials
Àâòîð: Crisfield M.A.
Àííîòàöèÿ: Non-linear Finite Element Analysis of Solids and Structures Volume 1 : Essentials M.A. Crisfield Imperial College of Science, Technology and Medicine, London, UK Taking an engineering rather than a mathematical bias, this comprehensive book details the fundamentals of non-linear finite element analysis. The author explains how non-linear techniques can be used to solve practical problems. The main ideas of geometric non-linearity, continuum mechanics, plasticity, element technology and stability theory are explored in detail. The reader is also introduced to the recent research in this developing field. The computer programs in the text are available on the Internet via anonymous ftp, using the URL ftp://cc.ic.ac.uk, directory /pub/depts/aero/nonlin. These useful finite element computer programs illustrate many of the ideas considered in the book. The logic can also be followed without these finer details since these computer programs and subroutines are also represented by examples and flowcharts. The second volume will address advanced topics such as large strains and large rotations, plasticity with a range of yield criteria and hardening rules, stability theory and advanced solution procedures including branch-switching techniques, contact and friction, and non-linear dynamics. It will also include examples from an up-dated non-linear finite element computer program incorporating the advanced solution procedures.
ßçûê:
Ðóáðèêà: Ìàòåìàòèêà /×èñëåííûå ìåòîäû /Êîíå÷íûå ýëåìåíòû /
Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö
ed2k: ed2k stats
Ãîä èçäàíèÿ: 1996
Êîëè÷åñòâî ñòðàíèö: 362
Äîáàâëåíà â êàòàëîã: 20.02.2005
Îïåðàöèè: Ïîëîæèòü íà ïîëêó |
Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
Ïðåäìåòíûé óêàçàòåëü
(or KTl) method 12
ABAQUS 154[A1] 178[A1]
Acceleration techniques, secant-related 310—314
Ahmad, S., Irons, B .M.& Zienkiewicz, O.C. 234[A1]
Allgower, E.L. 325[A1]
Allman, D.J. 235[A3] 242[A2] 255[A2] 326[A4]
Almansi strain 63—65 74 120 123 130 148 149
Almroth, B.O. 326[A5]
Ang, A.H.S.& Lopez, L.A. 2[A1]
Arc-length method 253 266—276
Arc-length method, automatic switching to 288
Arc-length method, cylindrical 276—286
Arc-length method, linearised 274—275
Arc-length method, spherical 273—274 285
Argyris, J. 235[A4]
Argyris, J.H. 2[A2] 2[A3]
Argyris, J.H., Balmer, H., Doltsinis, J.St., Dunne, P.C., Haase, M., Klieber, M., Malejannakis, G.A., Mlejenek, J.P., Muller, M.& Scharpf, D.W. 211[A1]
Argyris, J.H., Vaz, L.E.& Willam, K.J. 154[A2]
Armen, H. 152[A3]
Armen, H., Pifko, A.B., Levine, H.S.& Isakson, G. 2[A4]
Augmented stiffness matrix 273
Automatic increment cutting 288
Automatic increments 286—288
Axial strain 217
Axial symmetry 107—108 181
Axisymmetric membrane 142—144
Backlund, J. 234[B1]
Backward-Euler algorithm 174 180
Backward-Euler procedure 167 171 177 195—196
Backward-Euler return 176 181 189—191
Bar under uniaxial load 90
Bar under uniaxial tension or compression 62—65
Bar-spring problems 7 17 26
Bar-spring problems, imperfect buckling with two variables 51—55
Bar-spring problems, perfect buckling with two variables 50—51
Bar-spring problems, single variable with no spring 49—50
Bar-spring problems, single variable with spring 48—49
Bartholomew, P. 255[B1]
Bathe, K.J. 136[B2] 146[B2] 148[B2]
Bathe, K.J.& Bolourchi, S . 201 [B1] 225[B1] 234[R2] 236[B2] 243[B2]
Bathe, K.J.& Cimento, A.P. 310[B3]
Bathe, K.J.& Dvorkin, E.N. 324[B2]
Bathe, K.J., Ramm, E., & Wilson, E. 136[B1]
Batoz, J.L.& Dhatt, G. 273[B4] 275[B4]
Bauschinger effect 161—162
Beam-theory relationships 213
Beams, two-dimensional formulations 201—233
Belleni, P.X.& Chulya, A. 266[B5] 324[B5]
Belytschko, T. 122[B1]
Belytschko, T.& Glaum, L.W. 201[B3] 211[B3] 218[B3]
Belytschko, T.& Hseih, B.J. 201[B2] 211[B2] 225[B2]
Belytschko, T.& Hseih, J. 126[B2] 131[B2]
Belytschko, T.& Lin, J.I. 234[B4]
Belytschko, T.& Velebit, M. 2[B1]
Belytschko, T., Lin, J.& Tsay, C.-S. 234[B6]
Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N.& Ong, J.S.-J. 234[B7]
Belytschko, T., Wong, B.L.& Chiang, H.-Y. 234[B3] 235[B3]
Belytschko, T., Wong, B.L.& Stolarski, H. 234[B5]
Bending stresses and strains 213—214
Bergan, P.G. 287[B6] 288[B6]
Bergan, P.G.& Felippa, C.A. 235[B8]
Bergan, P.G.& Mollestad, E. 276[B10]
Bergan, P.G.& Soreide, T. 252[B7] 266[B7] 287[B7] 287[B9] 288[B7]
Bergan, P.G., Horrigmoe, G., Krakeland, B. & Soreide, T.H. 266[B8] 287[B8] 288
Besseling, J.F. 162[B1]
Bicanic, N.P. 168[B2]
Bifurcation problem 94—96 317—319
Bisplinghoff, R.L., Mar, J.M.& Pian, T.H.H. 104[B3]
Boolean matrix 82
Bordered equations 272—273
Braudel, H.J., Abouaf, M.& Chenot, J.L. 154[B3] 167[B3] 178[B3]
Brebbia, C.& Connor, J. 2[B2]
Brink, K.& Kratzig, W.B. 201[B4]
Brittle collapse 266
Brodlie, K.W., Gourlay, A.R.& Greenstadt, J. 307[B11] 308[B11] 309[B11]
Broyden, C.G. 307[B12] 307[B13] 308[B12] 309[B13]
Buckley, A.& Lenir, A. 311[B15]
Buckley, A.G. 308[B14] 311[B14]
Buckling criterion 16
Burgoynne, C.& Crisfield, M.A. 206[B5]
Bushnell, D. 155[B4] 167[B4] 172[B4] 173[B4]
Calladine, C.R. 234[C1]
Carey, G.F.& Bo-Nan, J. 253[C1] 314[C1] 325[C1]
Carnoy, E. 326[C2]
Carpenter, N., Stolarski, H.& Belytschko, T. 234[C2] 235[C2] 236[C2] 238[C2] 239[C2] 240[C2] 242[C2] 244[C2] 247[C2]
Cartesian coordinate system 78
Cartesian displacements 78
Cassel, A.C. 325[C3]
Cauchy stresses 121—125 132 146—148
Centroidal approach 2
Chen, W.F. 152[C2]
Clarke, M.J.& Hancock, G.J. 324[C4]
Closest point algorithm 174
Clough, R.W.& Tocher, J.L. 234[C3] 236[C3]
Cole, G. 219[C1]
Combined incremental/iterative solution, computer program 45—48
Combined incremental/iterative solution, flowchart 44
Combined incremental/iterative solution, using full or modified Newton — Raphson iterations 10—13
Complementarity condition 193
Computer program, NONLTA 37 48 51
Computer program, NONLTB 3 9 4 1
Computer program, NONLTC 45—49
Computer program, NONLTD 298—303
Computer program, updating 291—307 see
Consis tent tangents 191—192
Consistent tangent modular matrix 167 178—181
Consistent tangent modular matrix for plane stress 184
Constitutive laws 132—133
Constrained Mindlin — Reissner formulation 239
Continuation method 2
Continuum mechanics 104—136
Convergence criteria 289—290
Corotational element, using Kirchhoff theory 21 1—19
Corotational element, using Timoshenko beam theory 219—220
Corotational formulation 219
Corotational formulation, using engineering-strain 77—80
Corotational stresses and strains 131—132
Cowper, G.R. 203[C2] 207[C2] 208[C2] 109[C2] 210[C2] 225
Crisfield, M.A. 34[C2] 154[C3] 154[C4] 155[C3] 171[C3] 178[C4] 201[C5] 207[C7] 211[C6] 211[C7] 213[C6] 214[C6] 235[C9] 235[C12] 236[C5] 236[C6] 236[C7] 236[C10] 236[C11] 239[C5] 239[C6] 240[C5] 240[C6] 242[C4] 242[C7] 242[C11] 252[C17] 252[C20] 254[C16] 256[C9] 256[C16] 266[C11] 266[C14] 266[C19] 269[C11] 269[C20] 270[C14] 270[C15] 274[C11] 278[C16] 280[C19] 286[C11] 286[C15] 286[C22] 287[C11] 288[C11] 290[C15] 310[C7] 310[C9] 310[C10] 310[C13] 310[C17] 311[C5] 311[C7] 311[C8] 311[C13] 312[C8] 324[8] 324[C11] 324[C16] 324[C17] 324[C19] 325[C5]
Crisfield, M.A.& Cole, G . 201[C3] 211[C3]
Crisfield, M.A.& Puthli, R.S. 201[C4] [C4]
Crisfield, M.A.& Wills, J. 236[C8] 238[C8] 242[C8] 269[C18] 270[C12] 278[C6] 286[C12] 288[C6] 289[C18] 290[C6] 291[C6]
Crisfield, M.A., Duxbury, P.G.& Hunt, G.W. 26[C1]
Current iterative direction 290
Current stiffness parameter 288
Cut-outs 311—312
Cylindrical arc-length method 276—286
Davidenko, D.F. 253[D1] 314[D1]
Davidon, W.C. 307[D2] 307[D3] 309[D3]
Dawe, D.J. 207[D1]
Day, A.S. 325[D4]
de Borst, R. 164[D1] 270[D5] 274[D5]
Decker, D.W.& Keller, H.B. 326[D6]
Decomposition theorem 131
Degenerate-continuum approach 235
Degenerate-continuum element using total Lagrangian formulation 243—247
Den Heijer, C.& Rheinboldt, W.C. 286[D7] 287[D7]
Dennis, J.E.& More, J. 252[D8] 287[D8] 307[D8] 308[D8]
Desai, C.S.& Siriwardane, H.J. 132[D1] 133[D1] 152[D2]
Deviatoric components 108—109 164
Deviatoric space 171
Deviatoric stresses 163
Discrete Kirchhoff formulation 239
Discrete Kirchhoff hypothesis 236
Displacement control 4
Displacement derivative matrix 116
Displacement derivative tensor 137
Dodds, R.H. 152[D3] 156[D3]
Drilling rotation 235
Drucker, D .C . 15 2[ D4]
Dupius, G.A., Hibbit, H.D., McNamara, S.F. & Marcal, P.V. 2[D1] 26[D1]
Duxbury, P.G., Crisfield, M.A.& Hunt, G.W. 26[D1]
Dvorkin, E.N.& Bathe, K.J. 234[D1]
E-values 74 76 205
Eccentricity 205—206
Eigenvalue problem 128
Elastic response 148—149
Elastic stiffness matrix 2
Elastic/perfectly plastic von Mises material under plane stress 156—159
Elasto-plastic material 144—146
Elasto-plastic modular matrix 156—159
Elasto-plastic tangent stiffness matrix 152
Elasto-plasticity 152
Engineering-strain, corotational formulation using 77—80
Epstein, M.& Murray, D.W. 201[E1]
Equilibrium path 9
Eriksson, A. 270[E2]
Eriksson, E. 289[E3] 324[E1]
Euclidean norm 289
Eulerian strain 120
Eulerian triad 129
Felippa, C.A. 253[F1] 274[F1] 274[F2] 324[F1] 325[F2] 325[F4]
Finite differences 152
Finite element computer program 261—264
Finite element formulation 137—139
Finite element method 152
Fink, J.P.& Rheinboldt, W.C. 270[F5]
Fletcher, R. 193[F1] 252[F7] 254[F7] 255[F7] 256[F7] 274[F7] 307[F6] 307[F7] 308[F6] 308[F7]
Fletcher, R.& Reeves, C.M. 325[F8]
Flow rule 193 194
Forde, B.W.R.& Sttemer, S.F. 266[F9] 275[F9]
Fortran computer program 23—56
Fortran subroutines 26—36
Fortran subroutines for general truss elements 85
Fortran subroutines for main structural iterative loop 280—285
Fortran subroutines to find new step length 258—261
Fortran subroutines, ACCEL 312—314
Fortran subroutines, application of arc-length constraint 276—280
Fortran subroutines, ARCL 278—280
Fortran subroutines, BCON 32—34
Fortran subroutines, CROUT 34—35
Fortran subroutines, ELEMENT 27—28
Fortran subroutines, ELSTRUC 31—32
Fortran subroutines, FORCE 30—31
Fortran subroutines, INPUT 29—30 87—88
Fortran subroutines, INPUT2 296—298
Fortran subroutines, ITER 280—285
Fortran subroutines, LSLOOP 292—294
Fortran subroutines, NEXINC 305—307
Fortran subroutines, QSOLV 278—280
Fortran subroutines, SCALUP 303—305
Fortran subroutines, SEARCH 259—261
Fortran subroutines, SOLVCR 35—36
Forward — Euler integration 185—188
Forward — Euler predictor 28 6
Forward — Euler procedure 166 167 170
Forward — Euler relationships 182
Forward — Euler tangential algorithm 174
Fox, L.& Stanton, E. 307[F10]
Frankel, S.P. 325[F11]
Frey, F.& Cescotto, S. 201[F1] 234[F1] [F1]
Fried, I. 275[F12]
Frieze, P.A., Hobbs, R.E.& Dolwing, P.J. 325[F13]
Gallagher, R.J.& Padlog, J. 2[G1]
Gallagher, R.J., Gellatly, R.A., Padlog, J.& Mallet, R.H. 2[G2]
Gauss point 166 167 221 223 224 256
Gaussian integration 206 210—211
General isoparametric element 223—225
Generalised displacement control 27 1—6
Geometric matrix 4
Geometric non-linearity 1
Geometric non-linearity with one degree of freedom 2—1 3
Geometric non-linearity with two variables 13—19
Geometric stiffness matrix 2 73 209 21 1
Georg, K. 325[G1]
Geradin, M., Idelsohn, S .& Hogge, M. 325[G1]
Gerdeen, J.C., Simonen, F.A.& Hunter, D.T. 2[G3]
Gierlinski, J.T.& Graves-Smith, T.R. 310[G2]
Gill, P.E.& Murray, W. 254[G4] 256[G4] 266 274[G3] 276[G3] 307[G4]
Green elastic materials 132
Green — Lagrange strain tensor 116
Green's strain 59 63 70 73 75 81 130 136 138 146 149 201
Green's strain, truss element based on 65—75
Green's strain, virtual work expressions using 118—119
Green, A.E.& Zerna, W. 104[G1]
Gupta, A.K.& Ma, P.S. 207[G1]
Haefner, L.& Willam, K.J. 201[H2]
Haftka, R.T., Mallet, R.H.& Nachbar, W. 326[H1]
Haisler, W.E., Stricklin, J.E.& Stebbins, F.J. 2[H1] 12[H1]
Hardening concepts 159—162
Hardening solution with one variable 93—94 16—11
Hardening solution with two variables 98—100 322—323
Harris, H.G.& Pifko, A.B. 2[H2]
Haselgrove, C.B. 266[H2] 275[H2]
Hestenes, M.& Steifel, E. 325[H3]
Hibbitt, H.D. 154[H1] 178[H1] 193[H1] 194[H1]
Hierarchical displacement functions 21 0
Hill, R. 152[H2] 160[H2] 161[H2] 193[H2]
Hinton, E.& Ezzat, M.H. 185[H4]
Hinton, E., Abdal-Rahman, H.H.& Zienkiewicz, O.C. 310[H4]
Hinton, E., Hellen, T.K.& Lyons, L.P.R. 185[H3]
Hodge, P.G. 152[H5]
Holand, I.& Moan, T. 2[H3]
Honigmoe, G.& Bergan, P.G. 234[H1] 235[H1] 242[H1]
Hsiao, K.M.& Hou, F.Y. 201[H1] 211[H1]
Hu — Washizu variational principle 207
Huang, H.C.& Hinton, E. 234[H2]
Huffington, N.G. 167[H6] 172[H6]
Hughes, T.J.R. 234[H5]
Hughes, T.J.R.& Hinton, E. 235[H4]
Hughes, T.J.R.& Liu, W.K. 234[H3]
Hughes, T.J.R.& Pister, K.S. 153[H7]
Hughes, T.J.R., Ferencz, R.M.& Hallquist, J.O. 325[H6]
Hughes, T.J.R., Levit, I.& Winget, J. 325[H5]
Hunter, S.C. 104[H1]
Hyperelastic materials 132 133
Hyperplane control method 276
Hypoelastic materials 133 144—146
Ilyushin, A.A. 152[11]
Implicit formulation 195—196
Inconsistent tangents 191—192
Incremental formulation, approximate 149—150
Incremental formulation, involving updating after convergence 147—148
Incremental mid-point algorithm 85
Incremental procedures 2
Incremental solution 6—8
Incremental solution, computer program 37—38
Incremental solution, flowchart 36—37
Incremental solution, using program NONLTA 4 8 5
Incremental strains 144—146 155—156
Incremental/iterative control input 294—296
IncrementaNterative solution, using program NONLTC 49
IncrementaNterative solution, using program NONLTC with displacement control 55
IncrementaNterative solution, using program NONLTC with large increments 54—55
IncrementaNterative solution, using program NONLTC with small increments 52—54
Inextensional bending 207
Initial displacement 4
Initial displacement matrix 2
Initial local slopes 219
Initial slope matrix 4
Initial stress matrix 4 13 15 16 26 73 153 209 219
Initial stress method 2 10—13
Internal force vector 68—70 240—241
Intersection point 185
Irons, B.& Elsawaf, A. 311[11]
Irons, B.M.& Ahmad, S. 235[11]
Isoparametric degenerate-continuum approach 225—229
Isotropic hardening 152
Isotropic strain hardening 159—160
Isotropic work hardening 160—161
Ðåêëàìà