Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials
Crisfield M.A. — Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Non-Linear Finite Element Analysis of Solids and Structures. Vol. 1: Essentials

Àâòîð: Crisfield M.A.

Àííîòàöèÿ:

Non-linear Finite Element Analysis of Solids and Structures Volume 1 : Essentials M.A. Crisfield Imperial College of Science, Technology and Medicine, London, UK Taking an engineering rather than a mathematical bias, this comprehensive book details the fundamentals of non-linear finite element analysis. The author explains how non-linear techniques can be used to solve practical problems. The main ideas of geometric non-linearity, continuum mechanics, plasticity, element technology and stability theory are explored in detail. The reader is also introduced to the recent research in this developing field. The computer programs in the text are available on the Internet via anonymous ftp, using the URL ftp://cc.ic.ac.uk, directory /pub/depts/aero/nonlin. These useful finite element computer programs illustrate many of the ideas considered in the book. The logic can also be followed without these finer details since these computer programs and subroutines are also represented by examples and flowcharts. The second volume will address advanced topics such as large strains and large rotations, plasticity with a range of yield criteria and hardening rules, stability theory and advanced solution procedures including branch-switching techniques, contact and friction, and non-linear dynamics. It will also include examples from an up-dated non-linear finite element computer program incorporating the advanced solution procedures.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/×èñëåííûå ìåòîäû/Êîíå÷íûå ýëåìåíòû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 1996

Êîëè÷åñòâî ñòðàíèö: 362

Äîáàâëåíà â êàòàëîã: 20.02.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
$K^1_1$ (or KTl) method      12
ABAQUS      154[A1] 178[A1]
Acceleration techniques, secant-related      310—314
Ahmad, S., Irons, B .M.& Zienkiewicz, O.C.      234[A1]
Allgower, E.L.      325[A1]
Allman, D.J.      235[A3] 242[A2] 255[A2] 326[A4]
Almansi strain      63—65 74 120 123 130 148 149
Almroth, B.O.      326[A5]
Ang, A.H.S.& Lopez, L.A.      2[A1]
Arc-length method      253 266—276
Arc-length method, automatic switching to      288
Arc-length method, cylindrical      276—286
Arc-length method, linearised      274—275
Arc-length method, spherical      273—274 285
Argyris, J.      235[A4]
Argyris, J.H.      2[A2] 2[A3]
Argyris, J.H., Balmer, H., Doltsinis, J.St., Dunne, P.C., Haase, M., Klieber, M., Malejannakis, G.A., Mlejenek, J.P., Muller, M.& Scharpf, D.W.      211[A1]
Argyris, J.H., Vaz, L.E.& Willam, K.J.      154[A2]
Armen, H.      152[A3]
Armen, H., Pifko, A.B., Levine, H.S.& Isakson, G.      2[A4]
Augmented stiffness matrix      273
Automatic increment cutting      288
Automatic increments      286—288
Axial strain      217
Axial symmetry      107—108 181
Axisymmetric membrane      142—144
Backlund, J.      234[B1]
Backward-Euler algorithm      174 180
Backward-Euler procedure      167 171 177 195—196
Backward-Euler return      176 181 189—191
Bar under uniaxial load      90
Bar under uniaxial tension or compression      62—65
Bar-spring problems      7 17 26
Bar-spring problems, imperfect buckling with two variables      51—55
Bar-spring problems, perfect buckling with two variables      50—51
Bar-spring problems, single variable with no spring      49—50
Bar-spring problems, single variable with spring      48—49
Bartholomew, P.      255[B1]
Bathe, K.J.      136[B2] 146[B2] 148[B2]
Bathe, K.J.& Bolourchi, S .      201 [B1] 225[B1] 234[R2] 236[B2] 243[B2]
Bathe, K.J.& Cimento, A.P.      310[B3]
Bathe, K.J.& Dvorkin, E.N.      324[B2]
Bathe, K.J., Ramm, E., & Wilson, E.      136[B1]
Batoz, J.L.& Dhatt, G.      273[B4] 275[B4]
Bauschinger effect      161—162
Beam-theory relationships      213
Beams, two-dimensional formulations      201—233
Belleni, P.X.& Chulya, A.      266[B5] 324[B5]
Belytschko, T.      122[B1]
Belytschko, T.& Glaum, L.W.      201[B3] 211[B3] 218[B3]
Belytschko, T.& Hseih, B.J.      201[B2] 211[B2] 225[B2]
Belytschko, T.& Hseih, J.      126[B2] 131[B2]
Belytschko, T.& Lin, J.I.      234[B4]
Belytschko, T.& Velebit, M.      2[B1]
Belytschko, T., Lin, J.& Tsay, C.-S.      234[B6]
Belytschko, T., Stolarski, H., Liu, W.K., Carpenter, N.& Ong, J.S.-J.      234[B7]
Belytschko, T., Wong, B.L.& Chiang, H.-Y.      234[B3] 235[B3]
Belytschko, T., Wong, B.L.& Stolarski, H.      234[B5]
Bending stresses and strains      213—214
Bergan, P.G.      287[B6] 288[B6]
Bergan, P.G.& Felippa, C.A.      235[B8]
Bergan, P.G.& Mollestad, E.      276[B10]
Bergan, P.G.& Soreide, T.      252[B7] 266[B7] 287[B7] 287[B9] 288[B7]
Bergan, P.G., Horrigmoe, G., Krakeland, B. & Soreide, T.H.      266[B8] 287[B8] 288
Besseling, J.F.      162[B1]
Bicanic, N.P.      168[B2]
Bifurcation problem      94—96 317—319
Bisplinghoff, R.L., Mar, J.M.& Pian, T.H.H.      104[B3]
Boolean matrix      82
Bordered equations      272—273
Braudel, H.J., Abouaf, M.& Chenot, J.L.      154[B3] 167[B3] 178[B3]
Brebbia, C.& Connor, J.      2[B2]
Brink, K.& Kratzig, W.B.      201[B4]
Brittle collapse      266
Brodlie, K.W., Gourlay, A.R.& Greenstadt, J.      307[B11] 308[B11] 309[B11]
Broyden, C.G.      307[B12] 307[B13] 308[B12] 309[B13]
Buckley, A.& Lenir, A.      311[B15]
Buckley, A.G.      308[B14] 311[B14]
Buckling criterion      16
Burgoynne, C.& Crisfield, M.A.      206[B5]
Bushnell, D.      155[B4] 167[B4] 172[B4] 173[B4]
Calladine, C.R.      234[C1]
Carey, G.F.& Bo-Nan, J.      253[C1] 314[C1] 325[C1]
Carnoy, E.      326[C2]
Carpenter, N., Stolarski, H.& Belytschko, T.      234[C2] 235[C2] 236[C2] 238[C2] 239[C2] 240[C2] 242[C2] 244[C2] 247[C2]
Cartesian coordinate system      78
Cartesian displacements      78
Cassel, A.C.      325[C3]
Cauchy stresses      121—125 132 146—148
Centroidal approach      2
Chen, W.F.      152[C2]
Clarke, M.J.& Hancock, G.J.      324[C4]
Closest point algorithm      174
Clough, R.W.& Tocher, J.L.      234[C3] 236[C3]
Cole, G.      219[C1]
Combined incremental/iterative solution, computer program      45—48
Combined incremental/iterative solution, flowchart      44
Combined incremental/iterative solution, using full or modified Newton — Raphson iterations      10—13
Complementarity condition      193
Computer program, NONLTA      37 48 51
Computer program, NONLTB      3 9 4 1
Computer program, NONLTC      45—49
Computer program, NONLTD      298—303
Computer program, updating      291—307 see
Consis tent tangents      191—192
Consistent tangent modular matrix      167 178—181
Consistent tangent modular matrix for plane stress      184
Constitutive laws      132—133
Constrained Mindlin — Reissner formulation      239
Continuation method      2
Continuum mechanics      104—136
Convergence criteria      289—290
Corotational element, using Kirchhoff theory      21 1—19
Corotational element, using Timoshenko beam theory      219—220
Corotational formulation      219
Corotational formulation, using engineering-strain      77—80
Corotational stresses and strains      131—132
Cowper, G.R.      203[C2] 207[C2] 208[C2] 109[C2] 210[C2] 225
Crisfield, M.A.      34[C2] 154[C3] 154[C4] 155[C3] 171[C3] 178[C4] 201[C5] 207[C7] 211[C6] 211[C7] 213[C6] 214[C6] 235[C9] 235[C12] 236[C5] 236[C6] 236[C7] 236[C10] 236[C11] 239[C5] 239[C6] 240[C5] 240[C6] 242[C4] 242[C7] 242[C11] 252[C17] 252[C20] 254[C16] 256[C9] 256[C16] 266[C11] 266[C14] 266[C19] 269[C11] 269[C20] 270[C14] 270[C15] 274[C11] 278[C16] 280[C19] 286[C11] 286[C15] 286[C22] 287[C11] 288[C11] 290[C15] 310[C7] 310[C9] 310[C10] 310[C13] 310[C17] 311[C5] 311[C7] 311[C8] 311[C13] 312[C8] 324[8] 324[C11] 324[C16] 324[C17] 324[C19] 325[C5]
Crisfield, M.A.& Cole, G .      201[C3] 211[C3]
Crisfield, M.A.& Puthli, R.S.      201[C4] [C4]
Crisfield, M.A.& Wills, J.      236[C8] 238[C8] 242[C8] 269[C18] 270[C12] 278[C6] 286[C12] 288[C6] 289[C18] 290[C6] 291[C6]
Crisfield, M.A., Duxbury, P.G.& Hunt, G.W.      26[C1]
Current iterative direction      290
Current stiffness parameter      288
Cut-outs      311—312
Cylindrical arc-length method      276—286
Davidenko, D.F.      253[D1] 314[D1]
Davidon, W.C.      307[D2] 307[D3] 309[D3]
Dawe, D.J.      207[D1]
Day, A.S.      325[D4]
de Borst, R.      164[D1] 270[D5] 274[D5]
Decker, D.W.& Keller, H.B.      326[D6]
Decomposition theorem      131
Degenerate-continuum approach      235
Degenerate-continuum element using total Lagrangian formulation      243—247
Den Heijer, C.& Rheinboldt, W.C.      286[D7] 287[D7]
Dennis, J.E.& More, J.      252[D8] 287[D8] 307[D8] 308[D8]
Desai, C.S.& Siriwardane, H.J.      132[D1] 133[D1] 152[D2]
Deviatoric components      108—109 164
Deviatoric space      171
Deviatoric stresses      163
Discrete Kirchhoff formulation      239
Discrete Kirchhoff hypothesis      236
Displacement control      4
Displacement derivative matrix      116
Displacement derivative tensor      137
Dodds, R.H.      152[D3] 156[D3]
Drilling rotation      235
Drucker, D .C .      15 2[ D4]
Dupius, G.A., Hibbit, H.D., McNamara, S.F. & Marcal, P.V.      2[D1] 26[D1]
Duxbury, P.G., Crisfield, M.A.& Hunt, G.W.      26[D1]
Dvorkin, E.N.& Bathe, K.J.      234[D1]
E-values      74 76 205
Eccentricity      205—206
Eigenvalue problem      128
Elastic response      148—149
Elastic stiffness matrix      2
Elastic/perfectly plastic von Mises material under plane stress      156—159
Elasto-plastic material      144—146
Elasto-plastic modular matrix      156—159
Elasto-plastic tangent stiffness matrix      152
Elasto-plasticity      152
Engineering-strain, corotational formulation using      77—80
Epstein, M.& Murray, D.W.      201[E1]
Equilibrium path      9
Eriksson, A.      270[E2]
Eriksson, E.      289[E3] 324[E1]
Euclidean norm      289
Eulerian strain      120
Eulerian triad      129
Felippa, C.A.      253[F1] 274[F1] 274[F2] 324[F1] 325[F2] 325[F4]
Finite differences      152
Finite element computer program      261—264
Finite element formulation      137—139
Finite element method      152
Fink, J.P.& Rheinboldt, W.C.      270[F5]
Fletcher, R.      193[F1] 252[F7] 254[F7] 255[F7] 256[F7] 274[F7] 307[F6] 307[F7] 308[F6] 308[F7]
Fletcher, R.& Reeves, C.M.      325[F8]
Flow rule      193 194
Forde, B.W.R.& Sttemer, S.F.      266[F9] 275[F9]
Fortran computer program      23—56
Fortran subroutines      26—36
Fortran subroutines for general truss elements      85
Fortran subroutines for main structural iterative loop      280—285
Fortran subroutines to find new step length      258—261
Fortran subroutines, ACCEL      312—314
Fortran subroutines, application of arc-length constraint      276—280
Fortran subroutines, ARCL      278—280
Fortran subroutines, BCON      32—34
Fortran subroutines, CROUT      34—35
Fortran subroutines, ELEMENT      27—28
Fortran subroutines, ELSTRUC      31—32
Fortran subroutines, FORCE      30—31
Fortran subroutines, INPUT      29—30 87—88
Fortran subroutines, INPUT2      296—298
Fortran subroutines, ITER      280—285
Fortran subroutines, LSLOOP      292—294
Fortran subroutines, NEXINC      305—307
Fortran subroutines, QSOLV      278—280
Fortran subroutines, SCALUP      303—305
Fortran subroutines, SEARCH      259—261
Fortran subroutines, SOLVCR      35—36
Forward — Euler integration      185—188
Forward — Euler predictor      28 6
Forward — Euler procedure      166 167 170
Forward — Euler relationships      182
Forward — Euler tangential algorithm      174
Fox, L.& Stanton, E.      307[F10]
Frankel, S.P.      325[F11]
Frey, F.& Cescotto, S.      201[F1] 234[F1] [F1]
Fried, I.      275[F12]
Frieze, P.A., Hobbs, R.E.& Dolwing, P.J.      325[F13]
Gallagher, R.J.& Padlog, J.      2[G1]
Gallagher, R.J., Gellatly, R.A., Padlog, J.& Mallet, R.H.      2[G2]
Gauss point      166 167 221 223 224 256
Gaussian integration      206 210—211
General isoparametric element      223—225
Generalised displacement control      27 1—6
Geometric matrix      4
Geometric non-linearity      1
Geometric non-linearity with one degree of freedom      2—1 3
Geometric non-linearity with two variables      13—19
Geometric stiffness matrix      2 73 209 21 1
Georg, K.      325[G1]
Geradin, M., Idelsohn, S .& Hogge, M.      325[G1]
Gerdeen, J.C., Simonen, F.A.& Hunter, D.T.      2[G3]
Gierlinski, J.T.& Graves-Smith, T.R.      310[G2]
Gill, P.E.& Murray, W.      254[G4] 256[G4] 266 274[G3] 276[G3] 307[G4]
Green elastic materials      132
Green — Lagrange strain tensor      116
Green's strain      59 63 70 73 75 81 130 136 138 146 149 201
Green's strain, truss element based on      65—75
Green's strain, virtual work expressions using      118—119
Green, A.E.& Zerna, W.      104[G1]
Gupta, A.K.& Ma, P.S.      207[G1]
Haefner, L.& Willam, K.J.      201[H2]
Haftka, R.T., Mallet, R.H.& Nachbar, W.      326[H1]
Haisler, W.E., Stricklin, J.E.& Stebbins, F.J.      2[H1] 12[H1]
Hardening concepts      159—162
Hardening solution with one variable      93—94 16—11
Hardening solution with two variables      98—100 322—323
Harris, H.G.& Pifko, A.B.      2[H2]
Haselgrove, C.B.      266[H2] 275[H2]
Hestenes, M.& Steifel, E.      325[H3]
Hibbitt, H.D.      154[H1] 178[H1] 193[H1] 194[H1]
Hierarchical displacement functions      21 0
Hill, R.      152[H2] 160[H2] 161[H2] 193[H2]
Hinton, E.& Ezzat, M.H.      185[H4]
Hinton, E., Abdal-Rahman, H.H.& Zienkiewicz, O.C.      310[H4]
Hinton, E., Hellen, T.K.& Lyons, L.P.R.      185[H3]
Hodge, P.G.      152[H5]
Holand, I.& Moan, T.      2[H3]
Honigmoe, G.& Bergan, P.G.      234[H1] 235[H1] 242[H1]
Hsiao, K.M.& Hou, F.Y.      201[H1] 211[H1]
Hu — Washizu variational principle      207
Huang, H.C.& Hinton, E.      234[H2]
Huffington, N.G.      167[H6] 172[H6]
Hughes, T.J.R.      234[H5]
Hughes, T.J.R.& Hinton, E.      235[H4]
Hughes, T.J.R.& Liu, W.K.      234[H3]
Hughes, T.J.R.& Pister, K.S.      153[H7]
Hughes, T.J.R., Ferencz, R.M.& Hallquist, J.O.      325[H6]
Hughes, T.J.R., Levit, I.& Winget, J.      325[H5]
Hunter, S.C.      104[H1]
Hyperelastic materials      132 133
Hyperplane control method      276
Hypoelastic materials      133 144—146
Ilyushin, A.A.      152[11]
Implicit formulation      195—196
Inconsistent tangents      191—192
Incremental formulation, approximate      149—150
Incremental formulation, involving updating after convergence      147—148
Incremental mid-point algorithm      85
Incremental procedures      2
Incremental solution      6—8
Incremental solution, computer program      37—38
Incremental solution, flowchart      36—37
Incremental solution, using program NONLTA      4 8 5
Incremental strains      144—146 155—156
Incremental/iterative control input      294—296
IncrementaNterative solution, using program NONLTC      49
IncrementaNterative solution, using program NONLTC with displacement control      55
IncrementaNterative solution, using program NONLTC with large increments      54—55
IncrementaNterative solution, using program NONLTC with small increments      52—54
Inextensional bending      207
Initial displacement      4
Initial displacement matrix      2
Initial local slopes      219
Initial slope matrix      4
Initial stress matrix      4 13 15 16 26 73 153 209 219
Initial stress method      2 10—13
Internal force vector      68—70 240—241
Intersection point      185
Irons, B.& Elsawaf, A.      311[11]
Irons, B.M.& Ahmad, S.      235[11]
Isoparametric degenerate-continuum approach      225—229
Isotropic hardening      152
Isotropic strain hardening      159—160
Isotropic work hardening      160—161
1 2 3
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2025
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå