Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The art of computer programming (vol. 2 Seminumerical Algorithms)

Àâòîð: Knuth D.E.

Àííîòàöèÿ:

Volume 2 of Donald Knuth's classic series The Art of Computer Programming covers seminumerical algorithms, with topics ranging from random number generators to floating point operations and other optimized arithmetic algorithms. Truly comprehensive and meticulously written, this book (and series) is that rarest of all creatures — a work of authoritative scholarship in classical computer science, but one that can be read and used profitably by virtually all working programmers.
The book begins with fundamental questions regarding random numbers and how to use algorithms to generate them. Subsequent chapters demonstrate efficient computation of single-precision and double-precision arithmetic calculations and modular arithmetic. The text then presents prime factorization (which can be used in cryptography, for instance) and algorithms for calculating fractions. This volume ends with algorithms for polynomial arithmetic and manipulation of power-series topics, which will benefit those with some knowledge of calculus.

Throughout this beautifully presented edition, Knuth incorporates hundreds of useful exercises for trying out the algorithms. These range from simple problems to larger research project topics. (The book provides answers, where appropriate, at the end of the book.) The result is a text that's suitable for college or graduate-level computer science courses or individual study by programmers. Volume 2 is an indispensable part of any working programmer's library.


ßçûê: en

Ðóáðèêà: Computer science/Àëãîðèòìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 762

Äîáàâëåíà â êàòàëîã: 18.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Divided differences      504 516
Dividend: the quantity u while computing [u/v] and u mod v      270
Division      194 265 270—275 278 282—284 311—313
Division, algebraic numbers      333 674
Division, avoiding      523—524
Division, balanced ternary      283
Division, by ten      321 328
Division, by zero      220 224 241 639
Division, complex      228 283 706
Division, continued fractions      649
Division, double-precision      251—252 278—279
Division, exact      284
division, floating point      220—221 230—231 243
Division, fractions      330
Division, long      270—275 278 282—284
Division, mixed-radix      209 635
Division, mod m      354 445 499
Division, multiprecision      270—275 278—279 282—283 311—313
Division, multiprecision by single-precision      282
Division, polynomial      420—439 487 534
Division, power series      525—526 533—534
Division, pseudo-      425—426 435—436
Division, quater-imaginary      283
Division, short      282
Division, string polynomials      436—437
Divisor (x is a divisor of y if y mod x = 0 and x > 0; it is a proper divisor if it is a divisor such that 1 < x < y), polynomial      422
Divisor: The quantity v while computing [u/v] and u mod v      270
Dixon, John Douglas      372 401—402 412 414 415 417
Dixon, Wilfrid Joseph      565
Dobell, Alan Rodney      17
Dobkin, David Paul      697 712
Dodgson, Charles Lutwidge      435
Donsker, Monroe David      559
Doob, Joseph Leo      559
Dorn, William Schroeder      488
Dot product      36 97 173—174 499—501
Double-precision arithmetic      246—253 278—279 295
Doubling      322 462
Doubling step      467
Doubling, continued fraction      375
Downey, Peter James      485
Dragon curve      606 609 655
Dragon sequence      655
Dresden, Arnold      196
Drift      237 244
Du Shiran      287
Dual of an addition chain      481 484
Duality formula      569
Duality principle      481 485 507 535 718
Dubner, Harvey Allen      664
Dumas, Philippe      355
Duncan, Robert Lee      264
Duodecimal number system      199—200
Dupre, Athanase      653
Durbin, James      57 568
Durham, Stephen Daniel      34
Durstenfeld, Richard      145
e      12 76 359 726—727 733
Earle, John Goodell      312
Eckhardt, R.      189
Edelman, Alan Stuart      280
Edinburgh rainfall      74
EDVAC computer      225—226
Effective algorithms      161—166 169 178
Effective information      179
Egyptian mathematics      335 462
Eichenauer-Herrman, Jiirgen      32 558 559
Eisenstein, Ferdinand Gotthold Max      457
Electrologica X8 computer      222
Electronic mail      406
Elementary symmetric functions      682—683
Elkies, Noam David      xi
Ellipsoid      105
Ellipsoid, random point on      141
Elliptic curve method      402
Empirical distribution functions      49
Empirical tests for randomness      41 61—80
Encoding a permutation      65—66 77—78 145
Encoding secret messages      193 403—407 415 417
Enflo, Per      683
Engineering Research Associates      208
Enhancing randomness      26 34
ENIAC computer      54 280
entropy      712
Enumerating binary trees      527 696 723
Enumerating prime numbers      382 412 416
Equality, approximate      224 233—235 239 242—243 245
Equidistributed sequence      150 163 177 179—183
Equidistribution test      61 74 75
Equitable distribution      181
Equivalent addition chains      480 484
Eratosthenes of Cyrene      412
Erdos, Pal (= Paul)      181 384 471 696
ERH      see “Extended Riemann hypothesis”
ERNIE      3
Error estimation      222 229 232 253 255 309—310
Error, absolute      240 309 312—313
Error, relative      222 229 232 253 255
Espelid, Terje Oskar      616
Essential      233—235 239—240 242—244
Essential equality      233—235 239—240 242—244
Estes, Dennis Ray      671
Estrin, Gerald      488
Euclid      335—337
Euclid's Algorithm      86 99 102 117 184 288 304 334—337 340 579
Euclid's algorithm, analysis of      356—379
Euclid's algorithm, compared to binary algorithm      341
Euclid's algorithm, extended      342—343 354 379 435—436 534
Euclid's algorithm, for polynomials      424 438—439—
Euclid's algorithm, for polynomials, extended      437 458
Euclid's algorithm, for string polynomials      426—428
Euclid's algorithm, generalized to the hilt      426—428
Euclid's algorithm, multiprecision      345—348 373
Euclid's algorithm, original form      335—336
Eudoxus of Cnidus      335 359
Euler, constant $\gamma$      359 379 726—727 733
Euler, Leonhard (Ýéëåð, Ëåîíàðä)      xi 357 375 377 392 407 526 649—651 653 655
Euler, theorem      20 286 548
Euler, totient function $\varphi(n)$      19—20 289 369 376 583 646
Eulerian numbers      284
Evaluation (computing the value), of determinants      498—500 523—524
Evaluation (computing the value), of mean and standard deviation      232 244
Evaluation (computing the value), of monomials      485 697
Evaluation (computing the value), of polynomials      485—524
Evaluation (computing the value), of powers      461—485
Eve, James      493 517
Eventually periodic sequence      7 22 375 385
Exact division      439
Excess q exponent      214—215 227 246
Exclusive OR      31 32 193 419
Exercises, notes on      ix—xi
Exhaustive search      103
Exponent overflow      217 221 227 231 241 243 249
Exponent part of a floating point number      214—215 246 263 283
Exponent underflow      217 221—222 227 231 241 249
Exponential deviates, generating      132—133 137
Exponential distribution      133 137 589
Exponential function      313 490 533 537
Exponential sums      84—85 110—115 181 305 382 501
Exponentiation (raising to a power)      461—485
Exponentiation (raising to a power) multiprecision      463
Exponentiation (raising to a power) of polynomials      463—464
Exponentiation (raising to a power) of power series      526 537 719—
Extended arithmetic      244—245 639
Extended Euclidean algorithm      342—343 354 379 435—436 534
Extended Euclidean algorithm, for polynomials      437 458
Extended Riemann hypothesis      395—396 671
F-distribution      135
Factor method of exponentiation      463 465 482 485
Factorial number system      66 209
Factorial powers      297 515 534 643 731
Factorials      416 622
Factorization (discovering factors), of integers      13—14 175 379—394 396—403 412—417
Factorization (discovering factors), of polynomials      439—461 514
Factorization (discovering factors), of polynomials mod p      439—449 455—456
Factorization (discovering factors), of polynomials over the integers      449—453
Factorization (discovering factors), of polynomials over the rationals      459
Factorization (discovering factors), optimistic estimates of running time      176
Factorization (discovering factors), uniqueness of      436
FADD (floating add)      223—224 227—228 238 253 516
Fagin, Barry Steven      403 632
Falling powers      297 731
Fan, Chung Teh      143
Fast Fourier Transform      73 306—310 318 502 505 512 516 706 710 713—714
Fast Fourier transform, history of      701
Fateman, Richard J.      463
Faure, Henri      164
FCMP (floating compare)      223 244
FDIV (floating divide)      223
Feijen, Wilhelmus [= Wim] Hendricus Johannes      636
Ferguson, Donald Fraser      280
Ferranti Mark I computer      3 192
Ferrenberg, Alan Milton      189
FFT      516 (see “Fast Fourier transform”)
Fibonacci, generator      27 34 36 37 47 52 54 92
Fibonacci, Leonardo, of Pisa      197 208 280
Fibonacci, number system      209
Fibonacci, numbers $F_n$: elements of the Fibonacci sequence      731
Fibonacci, numbers, table of      728
Fibonacci, sequence      27 37 213 264 360 468 660 666
Fibonacci, sequence, lagged      27—29 35 40 72 75 79—80 146 186—188 193
Field (an algebraic system admitting addition, subtraction, multiplication, and division)      213 331 420 422 506 525
Field (an algebraic system admitting addition, subtraction, multiplication, and division), finite      29—30 449 457 554—555 702
Fike, Charles Theodore      490
Finck, Pierre Joseph Etienne      360
Finite fields      29—30 449 457 554—555 702
Finite Fourier transform      see “Discrete Fourier transform”
Finite sequences, random      167—170 178
Fischer, Michael John      634
Fischer, Patrick Carl      241
Fischlin, Roger      669
Fisher, Ronald Aylmer      145
Fishman, George Samuel      108
FIX (convert to fixed point)      224
Fix-to-float conversion      221 223—224
Fixed point arithmetic      214 225—226 308—310 532
Fixed slash arithmetic      331—333 379—
Flajolet, Philippe Patrick      355 366 449 541 644
Flammenkamp, Achim      478 483 693
Flat distribution      see “Uniform distribution”
Flehinger, Betty Jeanne      262
Float-to-fix conversion      224—225 228
Floating binary numbers      214 225 227 254 263
Floating decimal numbers      214 226 254—264
Floating hexadecimal numbers      254 263
Floating point arithmetic      36 188 193 196 214—264 292
Floating point arithmetic, accuracy of      222 229—245 253 329 438 485
Floating point arithmetic, addition      215—220 227—228 230—231 235—238 253—254 602
Floating point arithmetic, addition, exact      236
Floating point arithmetic, axioms      230—231 242—245
Floating point arithmetic, comparison      233—235 239 242—243
Floating point arithmetic, decuple-precision      283
Floating point arithmetic, division      220—221 230—231 243
Floating point arithmetic, double-precision      246—253 278—279
Floating point arithmetic, hardware      223—226
Floating point arithmetic, intervals      228 240—242 244—245 333 613
Floating point arithmetic, mod      228 243 244
Floating point arithmetic, multiplication      220 230—231 243 263—264
Floating point arithmetic, multiplication, exact      244
Floating point arithmetic, operators of MIX      215 223—225 516
Floating point arithmetic, quadruple-precision      253
Floating point arithmetic, reciprocal      243 245 263
Floating point arithmetic, single-precision      214—228
Floating point arithmetic, subtraction      216 230—231 235—238 245 253 556 602
Floating point arithmetic, summation      232 244
Floating point arithmetic, triple-precision      252
Floating point arithmetic, unnormalized      238—240 244 327
Floating point numbers      196 214—215 222 228 246
Floating point numbers, radix-b, excess-g      214—215
Floating point numbers, statistical distribution      253—264
Floating point numbers, two's complement      228
Floating point radix conversion      326—329
Floating point trigonometric subroutines      245 247 490
Floating slash arithmetic      331 333
Floor function [x]      81 732
FLOT (convert to floating point)      223
Floyd, Robert W.      7 148 280 361 505 540
FMUL (floating multiply)      223 516
Foata, Dominique Cyprien      9
Forsythe, George Elmer      4 128
FORTRAN language      188 193 279 600 602
Fourier, division method      278
Fourier, Jean Baptiste Joseph      278
Fourier, series      90 487
Fourier, transform, discrete      169 305—311 316—318 501—503 506 512 520—521 524 595 700
Fractals      206
Fraction overflow      217 254 262 264
Fraction part of a floating point number      214—215 246 263
Fraction part of a floating point number, distribution of      254—264
Fractions, conversion      319—328
Fractions, decimal, history      197—198 326
Fractions, exponentiation      483
Fractions, random      see “Uniform deviates”
Fractions, terminating      328
Fractions: numbers in [0..1)      36
Fractions: rational numbers      330—333 420 526
Fraenkel, Aviezri S.      290 291 292 630
Franel, Jerome      258
Franklin, Joel Nick      149 158 159 177 180 182 577
Franta, William Ray      60
Fredricksen, Harold Marvin      557
Free associative algebra      437
Frequency function      see “Density function”
Frequency test      61 74 75
Friedland, Paul      613
Frieze, Alan Michael      599
Frobenius, automorphism      689
Frobenius, Ferdinand Georg      681 689
Frye, Roger Edward      538
FSUB (floating subtract)      223 253
Fuchs, Aime      9
Fundamental Theorem of Arithmetic      334 422 483
Gage, Paul Vincent      409
Galambos, Janos      661
Galois, Evariste      449 457
Galois, fields      see “Finite fields”
Galois, groups      679 681 689 690
Gambling systems      161
Gamma distribution      133—134 140
Gamma function, incomplete      56 59 133
Ganz, Jurg Werner      707
Gap test      62—63 74—76 136 158 180
Gardner, Martin      41 200 280 592
Garner, Harvey Louis      280 290 292
Gauss, Johann Friedrich Carl (= Carl Friedrich)      20 101 363 417 422 449 578 679 685 688 701
Gauss, lemma about polynomials      422—423 682
Gaussian integers      292 345 579
Gay, John      1
Gebhardt, Friedrich      34
Gehrhardt, Karl Immanuel      200
Geiger, Hans, counter      7
Geiringer, Hilda, von Mises      76
Generalized Dedekind sums      83—92 106
Generalized Riemann hypothesis      396
Generating functions      140 147 213 261 276—278 525 562—563 679—680 686 695
Generation of uniform deviates      10—40 184—189 193
Genuys, Francois      280
Geometric distribution      136 137 140 585
Geometric mean      283
Geometric series      84 307 519 700
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå