Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)
Knuth D.E. — The art of computer programming (vol. 2 Seminumerical Algorithms)



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: The art of computer programming (vol. 2 Seminumerical Algorithms)

Àâòîð: Knuth D.E.

Àííîòàöèÿ:

Volume 2 of Donald Knuth's classic series The Art of Computer Programming covers seminumerical algorithms, with topics ranging from random number generators to floating point operations and other optimized arithmetic algorithms. Truly comprehensive and meticulously written, this book (and series) is that rarest of all creatures — a work of authoritative scholarship in classical computer science, but one that can be read and used profitably by virtually all working programmers.
The book begins with fundamental questions regarding random numbers and how to use algorithms to generate them. Subsequent chapters demonstrate efficient computation of single-precision and double-precision arithmetic calculations and modular arithmetic. The text then presents prime factorization (which can be used in cryptography, for instance) and algorithms for calculating fractions. This volume ends with algorithms for polynomial arithmetic and manipulation of power-series topics, which will benefit those with some knowledge of calculus.

Throughout this beautifully presented edition, Knuth incorporates hundreds of useful exercises for trying out the algorithms. These range from simple problems to larger research project topics. (The book provides answers, where appropriate, at the end of the book.) The result is a text that's suitable for college or graduate-level computer science courses or individual study by programmers. Volume 2 is an indispensable part of any working programmer's library.


ßçûê: en

Ðóáðèêà: Computer science/Àëãîðèòìû/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: third edition

Ãîä èçäàíèÿ: 1997

Êîëè÷åñòâî ñòðàíèö: 762

Äîáàâëåíà â êàòàëîã: 18.11.2005

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Power series: a sum of the form $\Sigma_{k \geq 0} a_{k} z^{k}$      see “Generating functions”
Power tree      464 481
Poweroids      534—536 722
Powers, Don M.      312
Powers, evaluation of      461—485
Powers, evaluation of, multiprecision      463
Powers, evaluation of, polynomial      463—464
Powers, evaluation of, power series      526 537 719
Powers, Ralph Earnest      396 407
pp: primitive part      423—425
Pr: probability      150 152 168 179—180 257 264 472 734
Pratt, Vaughan Ronald      356 413
Precision (the number of digits in a representation), double      246—253 278—279 295
Precision (the number of digits in a representation), multiple      58 202 265—318 419 486
Precision (the number of digits in a representation), quadruple      253 295
Precision (the number of digits in a representation), single: fitting in one computer word      215
Precision (the number of digits in a representation), unlimited      279 283 331 416
Preconditioning      see “Adaptation”
Prediction tests      171 183
Preston, Richard McCann      280
Primality testing      380 391—396 409—414 549
Prime chains      415 666
Prime numbers, distribution of      381—382 405
Prime numbers, enumeration of      381—382 416
Prime numbers, factorization into      334
Prime numbers, largest known      407—412
Prime numbers, Mersenne      185 409 412 413
Prime numbers, size of mth      665
Prime numbers, useful      291 405 407—408 549—550 711
Prime numbers, useless      415
Prime numbers, verifying primality of      380 391—396 409—414 549
Prime numbers: integers greater than unity having no proper divisors      380
Primes in a unique factorization domain      421—422
Primitive element modulo m      20—23
Primitive notations for numbers      195 198
Primitive part of a polynomial      423—425
Primitive polynomial      422 436
Primitive polynomial modulo p      30—32 422
Primitive recursive function      166
Primitive root: A primitive element in a finite field      20—23 185 391 417 456 457
Pritchard, Paul Andrew      631
Probabilistic algorithms      see “Randomized algorithms”
Probability, abuse of      433
Probability, over the integers      150 152 257 264 472
Probability: ratio of occurrence      150 177 257
Probert, Robert Lorne      699
Programming languages      16 185 222
Pronouncing hexadecimal numbers      201
Proof of algorithms      281—282 336—337 592
Proofs, constructive versus nonconstructive      286 289 583 630
Proth, Francois Toussaint      663
Proulx, Rene      179
Pseudo-division of polynomials      425—426 435—436
Pseudorandom sequences      4 170—176 179
Ptolemy, Claudius      197
Public key cryptography      406
Purdom, Paul Walton, Jr.      541
Pyke, Ronald      566
q-series      536
Quadratic congruences, solving      417
Quadratic congruential sequences      26—27 37
Quadratic forms      98 521
Quadratic forms, minimizing, over the integers      98—101 105 115—118
Quadratic irrationalities, continued fractions for      358 374—375 397—401 412 415 665
Quadratic reciprocity law      393 411 414 663
Quadratic residues      415 697
Quadratic sieve method      402
Quadruple-precision arithmetic      253 295
Quandalle, Philippe      710
Quasirandom numbers      4 189
Quater-imaginary number system      205 209—210 283
Quaternary number system      195 200
Quick, Jonathan Horatio      77 147
Quinary number system      195 200 213
Quolynomial chains      498 524 704
Quotient, of polynomials      420—421 425—426 534
Quotient, partial      87 106 117 346 359 362—369 379 656 665
Quotient, trial      270—272 278 282
Quotient: [u/v]      265 (see “Division”)
Rabin, Michael Oser      175 396 406 413 415 448 449 707
Rabinowitz, Philip      279
Rademacher, Hans      90 91
Radioactive decay      7 132 137
Radix conversion      200 204 205 207 210 319—329 486 489
Radix conversion, floating point      326—329
Radix conversion, multiprecision      326 328
Radix point      10 185 195 204 209 214 319
Radix, complex      205—206 209—210
Radix, irrational      209
Radix, mixed      66 199 208—211 290 293 505
Radix, negative      204—205 209—210 212 328
Radix: base of positional notation      195
Rail, Louis Baker      240 242
Raimi, Ralph Alexis      257 262
Raleigh, Walter      199
Ramage, John Gerow      135
Ramanujan Iyengar, Srinivasa      662
Ramaswami, Vammi      383
Ramshaw, Lyle Harold      164 181
ran-array      186—188 193
Rand Corporation      3
Randell, Brian      202 225
Random bits      12 30—32 35—36 38 48 119—120 170—176
Random combinations      142—148
Random directions      135—136
Random fractions      10 (see “Uniform deviates”)
Random functions      4—9 385
Random integers, among all positive integers      257 264 342 354
Random integers, in a bounded set      119—121 138 185—186
Random mappings      4—9 385 657—658
Random number generators      1—193
Random number generators, for nonuniform deviates      119—148
Random number generators, for uniform deviates      10—40 184—189 193
Random number generators, machines      3 404
Random number generators, summary      184—193
Random number generators, tables      3
Random number generators, testing      41—118
Random number generators, using      1—2 119—148 664
Random permutations      145—148 384 460 679
Random permutations, of a random combination      148
Random point, in a circle      123
Random point, in a sphere      136
Random point, on a sphere      135
Random point, on an ellipsoid      141
Random polynomials      435 448 455 459
Random random number generators      6—9 26
Random real numbers      255 263
Random samples      142—148
Random sequences, finite      167—176 178—179 183
Random sequences, meaning of      2 149—183
Randomized algorithms: algorithms that use random numbers and usually produce a correct answer      1—2 171 395—396 401—402 413—417 436 447—449 453 459 669 688
Randomness, guaranteed      35—36 170—176
RANDU      26 107 188 551
Rangan      see “Pandu Rangan”
Range arithmetic      228 240—242 244—245 333 613
Rank, of apparition      410—411
Rank, of apparition, of a matrix      443—444 506 508 520
Rank, of apparition, of a tensor      506 508 514 520—524
RANLUX      109
Rap music      3
Rapoport, Anatol      541
Ratio method      130—132 133 140
Rational arithmetic      69 330—333 427—428 526
Rational function approximation      438—439 534
Rational functions      420 498 518
Rational functions, approximation and interpolation      438—439 505 534
Rational numbers      330 420 459
Rational numbers, approximation by      331—332 378—379 617
Rational numbers, mod m      379
Rational numbers, polynomials over      428 459
Rational numbers, positional representation of      16 211 213 328
Rational reconstruction      379
Real numbers      420
Real Time      286
Realization of a tensor      507
Reciprocal differences      505
Reciprocals      278—279 312—313 421
Reciprocals, floating point      243 245 263
Reciprocals, mod $2^e$      213
Reciprocals, mod m      26 213 354 445 456 646
Reciprocals, power series      537
Reciprocity laws      84 90 393 414
Recorde, Robert      xi 280—281
Rectangle-wedge-tail method      123—128 139
Rectangular distribution      see “Uniform distribution”
Recurrence relations      10 26—33 37—40 260—261 295 301—302; 318 351 362 386 409—411 442 525 634 687 695 714
Recursive processes      253 295 299—303 318 419 500 531 689 713
Reeds, James Alexander      III 599
Rees, David      39 169
Registers      491
Regular continued fractions      346 358—359 368 374—379 412 415 665
Reiser, John Fredrick      28 39 242
Reitwiesner, George Walter      213 280 280
Rejection method      125—126 128—129 134 138 139 591
Relative error      222 229 232 253 255
Relatively prime, polynomials      422 436 454
Relatively prime: having no common prime factors      11 19 286 330 332 342 354
Remainder: dividend minus quotient times divisor      265 272—273 420—421 425—426 437 534 see
Replicative law      90
representation of      205—206 209—210 292
Representation of $\infty$      225 244—245 332
Representation of numbers      see “Number systems”
Representation of trees      482
Reservoir sampling      143—144 147
Residue arithmetic      284—294 302—305 450 454 499
result set      494 517
Resultant of polynomials      433 690 674
Revah, Ludmila      706
Reverse of a polynomial      435 452 673 721
Reversing binary number system      212
Reversion of power series      527—530 533—536
Revolving binary number system      212
Rezucha, Ivan      143
Rhind papyrus      462
Rho method for factoring      384—386 393—394 413
Riccati, Jacopo Francesco, equation      650
Rieger, Georg Johann      653
Riemann, Georg Friedrich Bernhard      83 382 414
Riemann, hypothesis      382 663
Riemann, hypothesis, generalized      395—396 671
Riemann, integration      153—154 259
riffle shuffles      145 147
Ring with identity, commutative      418
Riordan, John      542
Rising powers      534 731
Ritzmann, Peter      721
Rivat, Joel      667
Rivest, Ronald Linn      403 405 707
Robber      190—192
Robinson, Donald Wilford      554
Robinson, Julia Bowman      666
Robinson, Raphael Mitchel      664 711
Roepstorff, Gert      366
Rolletschek, Heinrich Franz      9 345
Roman numerals      195 209
Romani, Francesco      500 715
Roof, Raymond Bradley      115
Roots of a polynomial      23 434 483 493
Roots of a polynomial, multivariate      436
Roots of unity      84 531—532 700 “Exponential
Ross, Douglas Taylor      192
Rotenberg, Aubey      11 47
Rothe, Heinrich August      535
Rouche, Eugene, theorem      690
Roulette      2 10 55
Round to even      237 241
Round to odd      237
Rounding      102 207 217 222 223 230—231 236—237
Rounding errors      232 242 698 718
Rounding overflow      217 220 222 224 227—228
Rounding, mediant      331—332 379
Rozier, Charles P.      324
RSA box      404
RSA encryption      403—407 415 629 669
Rudolff, Christof      198
Rumely, Robert Scott      396
Run test      63 66—69 74—77 158 180
Runs above (or below) the mean      63
Runs in a permutation      66 74 76
Russian peasant method      462
Ruzsa, Imre Zoltan      213
Ryser, Herbert John      515 699
Saarinen, Jukka Pentti Paivio      75
Sachau, Karl Eduard      461
Saddle point method      568
Sahni, Sartaj Kumar      60
Saidan, Ahmad Salim      198 461
Salamin, Eugene      283
Salfi, Robert      145
Samelson, Klaus      241—242 327
Samet, Paul Alexander      321
Sampling (without replacement)      1 142—148
Sands, Arthur David      610
Saunders, Benjamin David      455
Savage, John Edmund      707
Sawtooth function ((x))      81—82 90—91
Saxe, James Benjamin      141
Scarborough, James Blaine      241
Schatte, Peter      262 622
Schelling, Hermann von      65
Schmid, Larry Philip      73
Schmidt, Erhard      101 674
Schmidt, Wolfgang M      183
Schnorr, Claus-Peter      118 179 414 417 497 578 664 669
Schoenemann, Theodor      457
Schoenhage — Strassen algorithm      306—311
Schoenhage, Arnold      292 302 305 311 317 328 470 484 500 522 629 638 656 672 696 715
Scholz — Brauer conjecture      478 485
Scholz, Arnold      478
Schooling, William      627
Schreyer, Helmut      202
Schroeder, Friedrich Wilhelm Karl Ernst      531
Schroeder, function      531—532 724
Schroeppel, Richard Crabtree      399 400 671
Schubert, Friedrich Theodor von      449
Schwartz, Jacob Theodore      674 675
Schwarz (= Svarc), Stefan      442
Schwenter, Daniel      654
Secrest, Don      279 327
secret keys      193 403—407 415 417 505
secure communications      403—407 415
Sedecimal number system      202 (see “Hexadecimal”)
Sedgewick, Robert      540
Seed (starting value)      143 146 170 187—188 193 550 590
Seed (starting value), in a linear congruential sequence      10 17 20 184
Seidenberg, Abraham      198
Selection sampling      142—143 146
Selenius, Clas-Olof      648
Self-reproducing numbers      6 293—294 540
Selfridge, John Lewis      394 412 665
Semi-online algorithm      529
Semigroup      539
Seneschol, David      589
Septenary (radix 7) number system      200
Serial correlation coefficient      77
Serial correlation test      72—74 91 83 154 182
Serial test      39 60 62 74 75 78 95 106 109—115 158
Seroussi, Gadiel      712
Serret, Joseph Alfred      374 449 579
Sethi, Ravi      485
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå