Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Riviere J.C. (ed.), Myhra S. (ed.) — Handbook of Surface and Interface Analysis
Riviere J.C. (ed.), Myhra S. (ed.) — Handbook of  Surface and  Interface Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Surface and Interface Analysis

Àâòîðû: Riviere J.C. (ed.), Myhra S. (ed.)

Àííîòàöèÿ:

Integrating advances in instrumentation and methods, this work offers an approach to solving problems in surface and interface analysis, beginning with a particular problem and then explaining the most rational and efficient route to a solution. The book discusses electron optical and scanned probe microscopy, high spatial resolution imaging and synchrotron-based techniques. It emphasizes problem-solving for different classes of materials and material function.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 968

Äîáàâëåíà â êàòàëîã: 16.11.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Depth profiling, non-destructive, GaAs      264 265
Depth profiling, non-destructive, maximum analysable depth      264
Depth profiling, non-destructive, RBS      260—263
Depth profiling, non-destructive, summary      265
Depth profiling, optimum conditions      284—285 303
Depth profiling, recommendations      289—290 771—772
Depth profiling, sample preparation, optical examination      260
Depth profiling, sample preparation, polishing, electrochemical      260
Depth profiling, sample preparation, polishing, mechanical      260
Depth profiling, sample preparation, washing      260
Depth profiling, sample rotation      108 110 272—276 284 302—305
Depth profiling, SNMS      251 255 257 266 358
Depth profiling, sputtering      266 301 650
Depth profiling, SSIMS      229 251 266 358—359
Depth profiling, taper section      202 494 650—651 810—811
Depth profiling, typical profiles      255—257
Depth profiling, XPS      201—205 255 257 266—269 300 359 618—619 659-660
Depth resolution, constancy during sample rotation      284
Depth resolution, DCEMS      365
Depth resolution, DCEMS, data processing      365
Depth resolution, degradation during sputtering      108 269—271 300
Depth resolution, dependence on primary ion KE      108 270
Depth resolution, depth profiling      304 310
Depth resolution, depth profiling, charging problems      270
Depth resolution, depth profiling, definition      269
Depth resolution, depth profiling, limiting factors      270
Depth resolution, depth profiling, RBS      262—264
Depth resolution, depth profiling, sample rotation      110 273 302—303
Depth resolution, depth profiling, single interface between thick layers      306
Depth resolution, SPM (STM/STS)      401—402 404
Depth-selective CEMS (DCEMS)      360—368
Depth-selective CEMS (DCEMS), characteristics      43
Depth-selective CEMS (DCEMS), data processing      364—365
Depth-selective CEMS (DCEMS), depth information      363
Depth-selective CEMS (DCEMS), description      360
Depth-selective CEMS (DCEMS), Eu implant in S/S      362—363 368
Depth-selective CEMS (DCEMS), instrumentation      365—366
Depth-selective CEMS (DCEMS), physical processes      361 364
Depth-selective CEMS (DCEMS), sampling depth      360—361
Depth-selective CEMS (DCEMS), spatial resolution      360
Depth-selective CEMS (DCEMS), theory      364
Differential scattering cross-sections, ISS      148—149
Differentiation, in SPCMA      98
Differentiation, in SPCMA, primary beam chopping      98
Disappearance cross-section and yield, SSIMS and SNMS      221
Documentary standards in surface analysis      906—926
Doniach — Sunjic line shape, XPS      168
DSIMS      212 257—259
DSIMS problem-solving, corrosion 3—D images      678
DSIMS problem-solving, corrosion, C map      457
DSIMS problem-solving, corrosion, choice of primary ion      666
DSIMS problem-solving, corrosion, damage effects      679
DSIMS problem-solving, corrosion, depth profiling      666—667 677—678
DSIMS problem-solving, corrosion, detection of H      666
DSIMS problem-solving, corrosion, elemental images      670
DSIMS problem-solving, corrosion, grain boundary segregation      457
DSIMS problem-solving, corrosion, mapping      666 670 678
DSIMS problem-solving, corrosion, trace element sensitivity      666 668—669
DSIMS, characteristics      42 212 258—259 282
DSIMS, depth profiling      212 260 273 282—284 300 666—667
DSIMS, depth profiling, choice of ion      284
DSIMS, depth profiling, incident angle      284
DSIMS, depth profiling, ion energies      284—285
DSIMS, depth profiling, optimum conditions      284—285
DSIMS, depth profiling, sample rotation      273—276 284
DSIMS, elemental sensitivity      282—283
DSIMS, erosion rate      282
DSIMS, quantification      282—283
DSIMS, quantification, detection limits      283
DSIMS, quantification, matrix effect      283
DSIMS, quantification, sensitivity factor      283
DSIMS, quantification, standards      283
DSNMS      212
ECM      400—401
EDS, accelerating voltage      654
EDS, characteristics      42
EDS, corrosion      650
EDS, corrosion, oxide film      654 657
EDS, grain boundary analysis      450 474—475
EDS, grain boundary analysis, Inconel      690 475
EDS, information      546—547
EDS, tribology      709
EDS, use alongside electron spectroscopies      161
EFM      400—401
Electrochemistry, corrosion of Monel 400, anodic polarisation measurements      680—681
Electrochemistry, corrosion of Monel 400, EIS measurements      679 681—682
Electrochemistry, corrosion of Monel 400, electrochemical parameters during oxide film growth      682 692
Electrochemistry, electrochemical techniques      671—674
Electrochemistry, electrochemical techniques, anodic polarisation      672—673
Electrochemistry, electrochemical techniques, impedance spectroscopy      673—674
Electrochemistry, electrochemical techniques, linear polarisation      672
Electrochemistry, electrode kinetics      671—672
Electrochemistry, Tafel slope      672
Electron beam effects, damage of C fibres      609
Electron beam effects, ESD during AES      891—892
Electron beam effects, ESD during AES, minimisation methods      894
Electron beam effects, in depth profiling      271
Electron beam effects, InP on $SiO_{2}$      527
Electron beam effects, oxide reduction      325—327
Electron sources      473
Electron sources, AES      95
Electron sources, HREELS      899
Electron sources, SAM      118
Electron tunnelling, energy level scheme      402—406
Electron tunnelling, in STM/STS      402—404
Electronegativity, correlation with BE shifts      84
Electronegativity, Si      517
Electronegativity, transition metals      517
Electronic configuration of elements      873—876
Elemental data, configuration      873—876
Elemental data, density      873—876
Elemental data, isotopes      877—883
Elemental data, structure      873—876
Elemental sensitivity      488
Elemental sensitivity, AES      501
Elemental sensitivity, definition      489
Elemental sensitivity, ELS      489
Elemental sensitivity, SIMS      751
ELNES, tribology      708 718
ELS (low energy)      487 888—891
ELS (low energy), angular resolution      888—889
ELS (low energy), characteristics      41 488
ELS (low energy), description      888
ELS (low energy), elemental sensitivity      488 189
ELS (low energy), information      546—547
ELS (low energy), InP on $SiO_{2}$, as complement to SAM      526
ELS (low energy), InP on $SiO_{2}$, electron backscattering contrast      534
ELS (low energy), InP on $SiO_{2}$, loss spectra      532
ELS (low energy), InP on $SiO_{2}$, scanning images      532—534
ELS (low energy), InP on $SiO_{2}$, surface specificity      534
ELS (low energy), inter and intra-band transitions      888
ELS (low energy), passivation of InGaAsP by $NO_{2}$      507—508
ELS (low energy), passivation of InGaAsP by $NO_{2}$, comparison with SAM      509 535
ELS (low energy), passivation of InGaAsP by $NO_{2}$, interband transition      508
ELS (low energy), passivation of InGaAsP by $NO_{2}$, interpretation      508—509 535
ELS (low energy), passivation of InGaAsP by $NO_{2}$, plasmon features      508
ELS (low energy), scanning mode (REELM)      509 526
ELS (low energy), scanning mode (REELM), image of GaAs      510
ELS (low energy), scanning mode (REELM), spatial resolution      491 494 501 535
ELS (low energy), semiconductors and microelectronics      487 501
ELS (low energy), Sn      888—889
ELS (low energy), Sn oxides      890—891
ELS (low energy), Sn, surface and plasmon losses      888—889
ELS (low energy), spectral interferences      493
Embrittlement, steel, time and temperature      451
Energies, Auger, calculation      94 100 178
Energy analysis, RBS      261—262
Energy calibration, AES, use of standards      161
Energy calibration, XPS, adventitious carbon      69 315
Energy calibration, XPS, Fermi level measurement      70
Energy calibration, XPS, noble metal deposit      70
Energy calibration, XPS, spectral self-consistency      70
Energy calibration, XPS, use of standards      161
Energy calibration, XPS, work function measurement      69
Energy conversion factors      872
Energy distribution, secondary electrons      92—93
Energy distribution, secondary ions      222
Energy resolution, SRPS      491
Energy resolution, XPS      63—65 165 491
EPMA, analytical range      550
EPMA, characteristics      41
EPMA, corrosion film cross-sections      651
EPMA, elemental sensitivity      836
EPMA, information      546—547
EPMA, Roman leaded bronzes      848
EPMA, sampling depth      836
EPMA, use alongside electron spectroscopies      161
EPMA, Z limitation      836
ERDA, characteristics      43
ERDA, ion implanted layers      358
ESCA-300(Scienta)      90
Escape depth, average      61 264 308 462—463
ESCASCOPE (VG)      90—91
ESD      891—896
ESD, as surface analytical technique      894—896
ESD, as surface analytical technique, bonding of H on Si(100)      895
ESD, as surface analytical technique, detection of H      895
ESD, as surface analytical technique, ion energy analysis (ESDIED)      895
ESD, description, electron beam effects      891—894
ESD, description, mass analysis of desorbed ions      893
ESD, desorption cross-section      894
ESD, expression for desorbed current      892
ESD, in SAM      118
ESD, ion angular distribution (ESDIAD)      896
Eu implant in S/S, DCEMS phase analysis      362—363
Eu implant in S/S, stress induced transformation      363
EXAFS, catalysis, atomic environment in bimetallic systems      770—771
EXAFS, catalysis, Pt — Re and Pt — Sn reforming catalysts      771
EXAFS, characteristics      40
EXAFS, derivation of local atomic order      708—709 717—718 771
EXAFS, description      550 708—709
EXAFS, information      546—547 707
EXAFS, radial distribution function (RDF)      708—709 717—718
EXAFS, tribology, environment of Fe and Zn atoms in wear debris      717—719
EXAFS, tribology, location of shearing process      710
EXAFS, use in analysis of minerals      556—558
EXAFS, use in analysis of minerals, surface sites      566 568
EXELFS, characteristics      42
EXELFS, tribology      708
F (fluorine), Auger parameter $\alpha^{*}$      762
F (fluorine), XAES spectrum      163
FABMS, catalysis      749
FABMS, catalysis, association of Pt and Sn on $Al_{2}O_{3}$      767 769
FABMS, catalysis, avoidance of charging problems      751
FABMS, catalysis, support-related clusters      769
FABMS, characteristics      43
Factor analysis, AES      180 277—278
Factor analysis, AES, W/N system      277—278
Fibres, C 1s spectra      609—611 618 620—632
Fibres, C 1s spectra, $\beta$-carbon atoms      629—631
Fibres, C 1s spectra, component peaks      618 620—632
Fibres, C 1s spectra, curve-fitting      622—632
Fibres, C 1s spectra, from various fibres      623
Fibres, C 1s spectra, line-width variation      623
Fibres, conducting, problems inside instrumentation      607
Fibres, conducting, removal from instrumentation      607
Fibres, decomposition during analysis      609
Fibres, decomposition during analysis, electron beam damage      609
Fibres, decomposition during analysis, sputtering damage      609—610
Fibres, decomposition during analysis, use of monochromatisation      628—631
Fibres, decomposition during analysis, X-irradiation damage      609
Fibres, depth profiling      618—619
Fibres, depth profiling, ion bombardment damage      618
Fibres, depth profiling, non-destructive      618—619
Fibres, depth profiling, sample mounting      608 619
Fibres, in composites      605—606
Fibres, interfaces      636—639 804
Fibres, interfaces, methods of examination      636—638 804
Fibres, mounting for surface analysis      606—608
Fibres, mounting for surface analysis, multiple fibres      606—608
Fibres, mounting for surface analysis, orientation      607—608
Fibres, surface analytical techniques, AFM      612—613 788
Fibres, surface analytical techniques, FTIR and Raman spectroscopies      611—612
Fibres, surface analytical techniques, ISS      614
Fibres, surface analytical techniques, SEM      612
Fibres, surface analytical techniques, SIMS      614
Fibres, surface analytical techniques, surface free energy      613
Fibres, surface analytical techniques, TPD      614
Fibres, surface analytical techniques, WDS      612
Fibres, surface analytical techniques, XPS      614—634
Fibres, surface analytical techniques, XRD (grazing incidence)      610—611
Fibres, surface functionality, advantages of monochromatisation      621
Fibres, surface functionality, curve-fitting of C 1s and O 1s      622—631
Fibres, surface functionality, decomposition by heat from X-ray source      619—621
Fibres, surface functionality, from valence band features      620—621
Fibres, valence band      632—636
Fibres, valence band, chemical information      633—636
Fibres, valence band, modelling      633
Fibres, valence band, spectra      634 637
Field emission gun STEM (FEGSTEM)      450 473—474 476—477 683 687
Field emission gun STEM (FEGSTEM), characteristics      42
Field emission gun STEM (FEGSTEM), comparison with AES      476—477
Field emission gun STEM (FEGSTEM), grain boundary analysis      450 474 476
Field emission gun STEM (FEGSTEM), spatial resolution      476
Flood guns, electron, charge neutralisation      757
Flotation, mineral separation      550
Flotation, mineral separation, adsorption of ethyl xanthate      566
Flotation, mineral separation, implications from STM images      562—565
Flotation, mineral separation, surface analytical requirements      550—551
Flotation, ToF — SIMS analysis of activating species      571—573
Force-distance spectroscopy, in AFM      407—410
Fracture, ceramics, intergranular, transfer vessel      569
Fracture, ceramics, intergranular, vacuum conditions      569
Fracture, metals, intergranular      449 459—464
Fracture, metals, intergranular, AES analysis      460—464 471
Fracture, metals, intergranular, AES analysis, SAM image      464
Fracture, metals, intergranular, carbide particles      459 463
Fracture, metals, intergranular, ductile/brittle transition temperature      459
Fracture, metals, intergranular, grain boundary segregation      459
Fracture, metals, intergranular, hydrogen charging      465 467—469
Fracture, metals, intergranular, hydrogen charging, cathodic in acid      467
Fracture, metals, intergranular, hydrogen charging, molten salts      468
Fracture, metals, intergranular, impact (fast)      459—64
Fracture, metals, intergranular, impact (fast), fracture stage      459—460
Fracture, metals, intergranular, impact (fast), fracture surface      461
Fracture, metals, intergranular, impact (fast), specimen preparation      459
Fracture, metals, intergranular, impact (fast), vacuum conditions      459
Fracture, metals, intergranular, irradiation effects      471—472
Fracture, metals, intergranular, irradiation effects, annealing reversal      472
Fracture, metals, intergranular, SAM images, P and Sn      463—464
Fracture, metals, intergranular, SEM images      463—464 470
Fracture, metals, intergranular, TEM analysis      471 473—477
Fracture, metals, intergranular, TEM analysis, EDS      474—476
Fracture, metals, intergranular, TEM analysis, FEGSTEM      473—477
Fracture, metals, intergranular, TEM analysis, grain boundary composition      475
Fracture, metals, intergranular, TEM analysis, PEELS      473—474
Fracture, metals, intergranular, TEM analysis, sample preparation      471 473
Fracture, metals, intergranular, tensile (slow), fracture stage      468—470
Fracture, metals, intergranular, tensile (slow), SEM images      470
Fracture, metals, intergranular, XPS analysis      465—466
Fracture, metals, intergranular, XPS analysis, Sn image      466
Fracture, metals, intergranular, XPS analysis, Sn spectrum      467
Fragment ions. SSIMS      219—220
FTIR, adsorption of long-chain alcohols on glass      590
FTIR, characteristics      40
FTIR, composites and fibres      611
FTIR, reaction of Kaolinite with water      575
FTIR, surface functionality of glasses      589
FTIR, use in analysis of minerals, ceramics, and glasses      552
Fullerene ($C_{60}$), tribochemistry of thin films      740—741
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå