Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Riviere J.C. (ed.), Myhra S. (ed.) — Handbook of Surface and Interface Analysis
Riviere J.C. (ed.), Myhra S. (ed.) — Handbook of  Surface and  Interface Analysis



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Handbook of Surface and Interface Analysis

Àâòîðû: Riviere J.C. (ed.), Myhra S. (ed.)

Àííîòàöèÿ:

Integrating advances in instrumentation and methods, this work offers an approach to solving problems in surface and interface analysis, beginning with a particular problem and then explaining the most rational and efficient route to a solution. The book discusses electron optical and scanned probe microscopy, high spatial resolution imaging and synchrotron-based techniques. It emphasizes problem-solving for different classes of materials and material function.


ßçûê: en

Ðóáðèêà: Ôèçèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Èçäàíèå: 1st edition

Ãîä èçäàíèÿ: 1998

Êîëè÷åñòâî ñòðàíèö: 968

Äîáàâëåíà â êàòàëîã: 16.11.2009

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Analyzers, electron energy, magnetic toroidal      365—366
Analyzers, electron energy, magnetic toroidal, in DCEMS      366—368
Analyzers, electron energy, RFA      95
Analyzers, electron energy, SPCMA, differentiation      99
Analyzers, electron energy, SPCMA, phase sensitive detection      95 99
Analyzers, electron energy, SPCMA, primary beam chopping      99
Analyzers, electron energy, SPCMA, specimen position sensitivity      98
Analyzers, ion energy, CHA      129—130
Analyzers, ion energy, double toroidal      130—131
Analyzers, ion energy, DPCMA      129—130
Analyzers, ion energy, SPCMA      129
Analyzers, mass, choice for SSIMS and SNMS      214—215
Analyzers, mass, double focussing      214—215
Analyzers, mass, ion cyclotron resonance      214 215
Analyzers, mass, quadrupole      214 215
Analyzers, mass, time-of-flight (ToF)      214 215
Angular distribution, secondary ions      222
Angular resolution, AES (ARAES)      104 111—113 204—205 260 263—265 487
Angular resolution, mounting of fibres      607
Angular resolution, UPS (ARUPS)      887
Angular resolution, UPS (ARUPS), band structure mapping      887
Angular resolution, XPS (ARXPS)      77 111—112 260 263—265 487 511 513 566 619 750 794
Anodes, X-ray sources      63—65
Anodes, X-ray sources, contamination      63
Anodes, X-ray sources, Ti      65
Anodes, X-ray sources, Zr      66
Anodes, X-ray sources, “cross-over" radiation      63
ARAES      104 111—113 260 263—265 487
ARAES, advantages and disadvantages      266
ARAES, angle/depth relation      263
ARAES, calculation of layer-by-layer, contribution to Auger signal      112—114
ARAES, characteristics      258
ARAES, comparison with ISS      143—144
ARAES, instrumentation      112—113
ARAES, maximum analysable depth      264
ARAES, summary of capabilities      265
Archaeomaterials, choice of techniques, bulk      836
Archaeomaterials, choice of techniques, surface      836—837
Archaeomaterials, introduction      835
Archaeomaterials, relative destructiveness of XPS and SAM      837
Archaeomaterials, Roman lead pipe and leaded bronzes      837—868
Archaeomaterials, Roman lead pipe and leaded bronzes, Auger parameter $\alpha^{*}$, Cu and Pb      839 857—858 860
Archaeomaterials, Roman lead pipe and leaded bronzes, Auger spectra      841—844 853—855
Archaeomaterials, Roman lead pipe and leaded bronzes, backscattering effects      842 866
Archaeomaterials, Roman lead pipe and leaded bronzes, depth profiles      842—846 849—850 860-861
Archaeomaterials, Roman lead pipe and leaded bronzes, descriptions      837 857
Archaeomaterials, Roman lead pipe and leaded bronzes, lateral inhomogeneities      841—842 847 860—866
Archaeomaterials, Roman lead pipe and leaded bronzes, Pb Auger and BEs      839 842—843 856—857
Archaeomaterials, Roman lead pipe and leaded bronzes, SAM images      841—842 848 851 855—856
Archaeomaterials, Roman lead pipe and leaded bronzes, SAM point analyses      838 840—841 847
Archaeomaterials, Roman lead pipe and leaded bronzes, SEM images      840 847 862 864—865
Archaeomaterials, Roman lead pipe and leaded bronzes, XPS spectra      842 844 859
Archaeomaterials, specimen preparation      838
ARUPS, band structure mapping      887
ARXPS      77 111—112 260 263—265 487 513 566—567 619 794
ARXPS, $SiO_{2}$ on Si      78 513—514
ARXPS, $SiO_{2}$ on Si, average escape depths      514
ARXPS, advantages and disadvantages      266
ARXPS, angle/depth relation      263 513—514
ARXPS, characteristics      258
ARXPS, GaAs      264—265
ARXPS, maximum analysable depths      264
ARXPS, summary of capabilities      265
Asymmetry parameter, XPS      190—191
Asymmetry parameter, XPS, magic angle      191
Atom probe (time of flight)      477—478
Atom probe (time of flight), atomic resolution      477
Atom probe (time of flight), characteristics      43
Atom probe (time of flight), grain boundary analysis Astroloy      477—478
Atom probe (time of flight), position sensitive detection      478
Atomic mixing, during sputtering, effect on depth resolution      300—301
Atomic mixing, during sputtering, ion energy dependence      300 310
Atomic mixing, during sputtering, surface modification      300—301
ATR, and the electron spectroscopies      160
ATR, characteristics      41
ATR, description      897
ATR, sampling depth      897
ATR, surface coverage on PbS      573
ATR, use in analysis of minerals, ceramics and glasses      552
Attenuation length (AL)      61 104 113 190—192 204 487 511 517 519—520 523 584 597 856—857
Attenuation length (AL), dependence on KE      62 203
Attenuation length (AL), measurement      584 585
Auger kinetic energies, table      902—904
Auger parameter $\alpha^{*}$      902—904
Auger parameter $\alpha^{*}$, advantages      81 181 490 492 586 760 799—800
Auger parameter $\alpha^{*}$, Ag + oxides      81
Auger parameter $\alpha^{*}$, Al      762
Auger parameter $\alpha^{*}$, avoidance of charging problems      181 331 492 760 800
Auger parameter $\alpha^{*}$, chemical sensitivity      760
Auger parameter $\alpha^{*}$, chemical state plot      181—182 760—762
Auger parameter $\alpha^{*}$, Cr      763
Auger parameter $\alpha^{*}$, Cu      766 858 860
Auger parameter $\alpha^{*}$, database reference      179 904
Auger parameter $\alpha^{*}$, definition      81 180—181 331 492 586 760 799
Auger parameter $\alpha^{*}$, extra-atomic relaxation energy      760
Auger parameter $\alpha^{*}$, F      762
Auger parameter $\alpha^{*}$, O      512 516
Auger parameter $\alpha^{*}$, Pb      839
Auger parameter $\alpha^{*}$, Si      331 512—513 516 585—587 760
Auger parameter $\alpha^{*}$, Zn      799—800
Auger parameter $\beta$      181
Autoradiography      458
Average escape depths      61 63 264 308 462—463 513—514 517 519—520
Background, AES      93 187—189 316
Background, XPS      161—163 185—186 316
Background, XPS, subtraction      72 185—186 616 625—629
Backscattering, factor, AES      195 197—198 267 462 490—492 495—196 661
Backscattering, factor, peak shape effect      490
Backscattering, factor, substrate effect      198 463 495—496 842 860 866
Ball-cratering, AES depth-profiling      810
BE shifts, correlation with electronegativity      84
Benzene, adsorption on Ni(III), UPS spectrum      886
BEs, elemental      78 79
BEs, elemental, table      902—904
Bimetallic catalyst systems, cluster formation      770
Bimetallic catalyst systems, effects of alloying, XPS BEs      770
Bimetallic catalyst systems, effects of alloying, XPS peak widths      770
Brass adhesion to rubber      789—791
Brass adhesion to rubber, formation of sulphides      789
Brass adhesion to rubber, model compounds      789—790
Brass adhesion to rubber, schematic of chemical situation at interface      790
Bremsstrahlung background. X-ray sources      65
Bremsstrahlung use in XAES      181 492 511—512
BSE images, acquisition details      554 555
BSE images, atomic number dependence      554—555
BSE images, ceramic surface      554
BSE images, composite mineral      555
C (carbon), 1s energy as reference      172 315 628 758 763
C (carbon), 1s peak energy      69 166 172 315 627 758
C (carbon), 1s XPS spectrum, curve-fitted      180
C (carbon), 1s XPS spectrum, epoxy resin      628—629
C (carbon), 1s XPS spectrum, ethyl irifluoroacetate      61
C (carbon), 1s XPS spectrum, fibres      609—611 618—621 620-632
C (carbon), 1s XPS spectrum, hexafluoropropylene vinylidene fluoride      174
C (carbon), atomic mass standard      230
C (carbon), Auger spectra      103
C (carbon), graphitie      166 628
C (carbon), graphitie, line shape      166
C (carbon), graphitie, plasmon losses, $\pi$ electrons      166—167
C (carbon), in implantation profile      355
C (carbon), in polymers      172—173 336
C (carbon), in TiN, energetic positions      320
C (carbon), surface contaminant      166 175 313 659 758 783
C (carbon), surface contaminant, as energy reference      69 315
C (carbon), surface contaminant, line shape      166—167 625—626
C (carbon), XAES spectrum      163 172
C fibres, in composites      605—606
C fibres, in composites, $Si_{3}N_{4}$ coating      617
C fibres, in composites, AFM      613 788
C fibres, in composites, electron beam damage      609
C fibres, in composites, FTIR and Raman spectroscopies      611—612
C fibres, in composites, ISS      614
C fibres, in composites, problems with conducting fibres in instrumentation      607
C fibres, in composites, SEM      612
C fibres, in composites, SIMS      614 788 804
C fibres, in composites, sputtering damage      609—610
C fibres, in composites, surface free energy      613
C fibres, in composites, TPD      614
C fibres, in composites, treatment for strong adhesion      787
C fibres, in composites, WDS      612
C fibres, in composites, XPS      614—638 787—788 802
C fibres, in composites, XRD (grazing incidence)      610—611
Catalysis, acid-base properties      769—770
Catalysis, acid-base properties, chemical shifts in XPS      769—770
Catalysis, acid-base properties, molecular probes      769—770
Catalysis, acid-base properties, N 1s shifts in pyridine as probe      769
Catalysis, acid-base properties, OH groups on supports      770
Catalysis, AES, charging problems      750
Catalysis, AES, damage problems      750 752
Catalysis, AES, poor quantification      750
Catalysis, AES, usefulness in model systems      750
Catalysis, applicability of surface techniques      749—752
Catalysis, applicability of surface techniques, usefulness of XPS      749
Catalysis, best practice references      749
Catalysis, bimetallic systems      770—771
Catalysis, bimetallic systems, cluster formation      770
Catalysis, bimetallic systems, multi-technique approach      771
Catalysis, bimetallic systems, particle size effects      770
Catalysis, bimetallic systems, Pt — Re and Pt — Sn reforming catalysts      771
Catalysis, bimetallic systems, use of EXAFS      770—771
Catalysis, bimetallic systems, use of XAS      771
Catalysis, bimetallic systems, use of XRD      771
Catalysis, catalyst parameters and appropriate techniques      748
Catalysis, charging problems      756—757
Catalysis, charging problems, ASTM guide      757
Catalysis, charging problems, elimination by use of $\alpha^{*}$      760
Catalysis, charging problems, methods of control      757
Catalysis, damage during analysis      752—753
Catalysis, damage during analysis, chemical reduction      752—753
Catalysis, damage during analysis, degradation index      752
Catalysis, damage during analysis, minimization of heat load from X-ray source      752
Catalysis, depth profiling      771—772
Catalysis, depth profiling, altered surface layers      772
Catalysis, depth profiling, chemical reduction      772
Catalysis, depth profiling, risk of misinterpretation      771—772
Catalysis, FABMS, association of Pt and Sn on $Al_{2}O_{3}$      767 769
Catalysis, FABMS, support-related clusters      769
Catalysis, introduction      747—749
Catalysis, ISS, charge compensation      751
Catalysis, ISS, combination with XPS      752
Catalysis, ISS, surface specificity      751
Catalysis, multiple technique approach      748
Catalysis, quantitative surface analysis      772—776
Catalysis, quantitative surface analysis, coverage by ISS      775—776
Catalysis, quantitative surface analysis, crystallite growth      774
Catalysis, quantitative surface analysis, dispersion and coverage      773—775
Catalysis, quantitative surface analysis, errors in XPS intensity interpretation      775
Catalysis, quantitative surface analysis, extended layer models      774
Catalysis, quantitative surface analysis, heterogeneity of catalysts      772 775
Catalysis, quantitative surface analysis, homogeneity assumption      772 775
Catalysis, quantitative surface analysis, information sought      772
Catalysis, quantitative surface analysis, ISS intensities      775—776
Catalysis, quantitative surface analysis, layer model for XPS interpretation      773—774
Catalysis, quantitative surface analysis, sampling depths      750 772
Catalysis, quantitative surface analysis, sintering      774
Catalysis, quantitative surface analysis, XPS intensities      772—775
Catalysis, sample condition      749—750
Catalysis, sample condition, activated      749
Catalysis, sample condition, aged      749
Catalysis, sample condition, calcined      749
Catalysis, sample condition, deactivated      749
Catalysis, sample condition, poisoned      749
Catalysis, sample condition, precursor      749
Catalysis, sample condition, reduced      749
Catalysis, sample handling, ASTM guide      754
Catalysis, sample handling, protective atmosphere      754
Catalysis, sample mounting, deposition from solvent suspension      754
Catalysis, sample mounting, double-sided adhesive tape      754
Catalysis, sample mounting, pressed into grids or foils      754
Catalysis, sample mounting, wafers      754
Catalysis, sample preparation, $MoO_{3}$ on $SiO_{2}$      755
Catalysis, sample preparation, outgassing problems      754
Catalysis, sample preparation, pellet grinding      754
Catalysis, sample preparation, spectral interference from binder      754
Catalysis, sample preparation, thin oxide film supports      755
Catalysis, sample preparation, treatment in preparation chamber      754
Catalysis, spatial resolution needs      750
Catalysis, SSIMS      766—769
Catalysis, SSIMS, cluster ions      766
Catalysis, SSIMS, high sensitivity requirement      766
Catalysis, SSIMS, model systems      769
Catalysis, SSIMS, nearest-neighbour information      766
Catalysis, SSIMS, recombination ambiguity      766
Catalysis, SSIMS, reference materials      766
Catalysis, SSIMS, Rh on $Al_{2}O_{3}$      767—768
Catalysis, SSIMS, spectra databases      766
Catalysis, SSIMS, surface fragmentation      766
Catalysis, standardization      749
Catalysis, XPS, $MoO_{3}$ on $SiO_{2}$      755
Catalysis, XPS, activation of $\gamma$-alumina      762
Catalysis, XPS, Auger parameter $\alpha^{*}$      760—763
Catalysis, XPS, BE particle size dependence      763
Catalysis, XPS, C 1s reference difficulties      758—759
Catalysis, XPS, chemical state plots      762
Catalysis, XPS, differential charging      756—757
Catalysis, XPS, noble metal particle references      758—759
Catalysis, XPS, particle size effects      763 765
Catalysis, XPS, support peaks as references      758
Catalysis, XPS, supported metal catalysts      763
Catalysis, XPS, use of transition metal shake-up peaks      761 763
Ceramics      543 576—586
Ceramics, adsorption      582 584—585
Ceramics, adsorption, ARXPS      585
Ceramics, adsorption, contact angle      582
Ceramics, adsorption, film thickness from XPS      585
Ceramics, adsorption, information from combined techniques      582
Ceramics, adsorption, organic molecules      582 584 585
Ceramics, analysis strategy      549 552
Ceramics, analysis strategy, chemical analysis      550
Ceramics, analysis strategy, physical imaging      548
Ceramics, analysis strategy, structural analysis      548—550
Ceramics, combined techniques      545
Ceramics, depth profiles      581
Ceramics, depth profiles, information from nuclear techniques      581
Ceramics, depth profiles, information from XPS      584
Ceramics, grain boundaries      580—581
Ceramics, grain boundaries, information from SAM      581 583
Ceramics, grain boundaries, information from SSIMS      581 583
Ceramics, grain boundaries, intergranular films      580
Ceramics, grain boundaries, TEM images      580—582
Ceramics, information requirements      543—547
Ceramics, ion implanted      368
Ceramics, phase structures      576—578
Ceramics, phase structures, characterisation by combined techniques      576—578
Ceramics, phase structures, information from diffraction techniques      576
Ceramics, phase structures, information from nuclear methods      576
Ceramics, phase structures, information from STM and AFM      576
Ceramics, phase structures, ion beam damage      577
Ceramics, phase structures, schematic distribution      576—577
Ceramics, phase structures, TEM image      576 578
Ceramics, surface characterisation requirements      543—544
Ceramics, surface modification      585—586
Ceramics, surface modification, Auger parameter $\alpha^{*}$      585—586
Ceramics, surface modification, silicates      585—586
Ceramics, surface modification, water vapour plasma      585
Ceramics, surface sites      579—580
Ceramics, surface sites, information from ISS      579—580
Ceramics, surface sites, modelling theory      580
Ceramics, surface sites, oxides      580
Ceramics, surface structures      578—579
1 2 3 4 5 6 7 8 9
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå