|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Riviere J.C. (ed.), Myhra S. (ed.) — Handbook of Surface and Interface Analysis |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Analyzers, electron energy, magnetic toroidal 365—366
Analyzers, electron energy, magnetic toroidal, in DCEMS 366—368
Analyzers, electron energy, RFA 95
Analyzers, electron energy, SPCMA, differentiation 99
Analyzers, electron energy, SPCMA, phase sensitive detection 95 99
Analyzers, electron energy, SPCMA, primary beam chopping 99
Analyzers, electron energy, SPCMA, specimen position sensitivity 98
Analyzers, ion energy, CHA 129—130
Analyzers, ion energy, double toroidal 130—131
Analyzers, ion energy, DPCMA 129—130
Analyzers, ion energy, SPCMA 129
Analyzers, mass, choice for SSIMS and SNMS 214—215
Analyzers, mass, double focussing 214—215
Analyzers, mass, ion cyclotron resonance 214 215
Analyzers, mass, quadrupole 214 215
Analyzers, mass, time-of-flight (ToF) 214 215
Angular distribution, secondary ions 222
Angular resolution, AES (ARAES) 104 111—113 204—205 260 263—265 487
Angular resolution, mounting of fibres 607
Angular resolution, UPS (ARUPS) 887
Angular resolution, UPS (ARUPS), band structure mapping 887
Angular resolution, XPS (ARXPS) 77 111—112 260 263—265 487 511 513 566 619 750 794
Anodes, X-ray sources 63—65
Anodes, X-ray sources, contamination 63
Anodes, X-ray sources, Ti 65
Anodes, X-ray sources, Zr 66
Anodes, X-ray sources, “cross-over" radiation 63
ARAES 104 111—113 260 263—265 487
ARAES, advantages and disadvantages 266
ARAES, angle/depth relation 263
ARAES, calculation of layer-by-layer, contribution to Auger signal 112—114
ARAES, characteristics 258
ARAES, comparison with ISS 143—144
ARAES, instrumentation 112—113
ARAES, maximum analysable depth 264
ARAES, summary of capabilities 265
Archaeomaterials, choice of techniques, bulk 836
Archaeomaterials, choice of techniques, surface 836—837
Archaeomaterials, introduction 835
Archaeomaterials, relative destructiveness of XPS and SAM 837
Archaeomaterials, Roman lead pipe and leaded bronzes 837—868
Archaeomaterials, Roman lead pipe and leaded bronzes, Auger parameter , Cu and Pb 839 857—858 860
Archaeomaterials, Roman lead pipe and leaded bronzes, Auger spectra 841—844 853—855
Archaeomaterials, Roman lead pipe and leaded bronzes, backscattering effects 842 866
Archaeomaterials, Roman lead pipe and leaded bronzes, depth profiles 842—846 849—850 860-861
Archaeomaterials, Roman lead pipe and leaded bronzes, descriptions 837 857
Archaeomaterials, Roman lead pipe and leaded bronzes, lateral inhomogeneities 841—842 847 860—866
Archaeomaterials, Roman lead pipe and leaded bronzes, Pb Auger and BEs 839 842—843 856—857
Archaeomaterials, Roman lead pipe and leaded bronzes, SAM images 841—842 848 851 855—856
Archaeomaterials, Roman lead pipe and leaded bronzes, SAM point analyses 838 840—841 847
Archaeomaterials, Roman lead pipe and leaded bronzes, SEM images 840 847 862 864—865
Archaeomaterials, Roman lead pipe and leaded bronzes, XPS spectra 842 844 859
Archaeomaterials, specimen preparation 838
ARUPS, band structure mapping 887
ARXPS 77 111—112 260 263—265 487 513 566—567 619 794
ARXPS, on Si 78 513—514
ARXPS, on Si, average escape depths 514
ARXPS, advantages and disadvantages 266
ARXPS, angle/depth relation 263 513—514
ARXPS, characteristics 258
ARXPS, GaAs 264—265
ARXPS, maximum analysable depths 264
ARXPS, summary of capabilities 265
Asymmetry parameter, XPS 190—191
Asymmetry parameter, XPS, magic angle 191
Atom probe (time of flight) 477—478
Atom probe (time of flight), atomic resolution 477
Atom probe (time of flight), characteristics 43
Atom probe (time of flight), grain boundary analysis Astroloy 477—478
Atom probe (time of flight), position sensitive detection 478
Atomic mixing, during sputtering, effect on depth resolution 300—301
Atomic mixing, during sputtering, ion energy dependence 300 310
Atomic mixing, during sputtering, surface modification 300—301
ATR, and the electron spectroscopies 160
ATR, characteristics 41
ATR, description 897
ATR, sampling depth 897
ATR, surface coverage on PbS 573
ATR, use in analysis of minerals, ceramics and glasses 552
Attenuation length (AL) 61 104 113 190—192 204 487 511 517 519—520 523 584 597 856—857
Attenuation length (AL), dependence on KE 62 203
Attenuation length (AL), measurement 584 585
Auger kinetic energies, table 902—904
Auger parameter 902—904
Auger parameter , advantages 81 181 490 492 586 760 799—800
Auger parameter , Ag + oxides 81
Auger parameter , Al 762
Auger parameter , avoidance of charging problems 181 331 492 760 800
Auger parameter , chemical sensitivity 760
Auger parameter , chemical state plot 181—182 760—762
Auger parameter , Cr 763
Auger parameter , Cu 766 858 860
Auger parameter , database reference 179 904
Auger parameter , definition 81 180—181 331 492 586 760 799
Auger parameter , extra-atomic relaxation energy 760
Auger parameter , F 762
Auger parameter , O 512 516
Auger parameter , Pb 839
Auger parameter , Si 331 512—513 516 585—587 760
Auger parameter , Zn 799—800
Auger parameter 181
Autoradiography 458
Average escape depths 61 63 264 308 462—463 513—514 517 519—520
Background, AES 93 187—189 316
Background, XPS 161—163 185—186 316
Background, XPS, subtraction 72 185—186 616 625—629
Backscattering, factor, AES 195 197—198 267 462 490—492 495—196 661
Backscattering, factor, peak shape effect 490
Backscattering, factor, substrate effect 198 463 495—496 842 860 866
Ball-cratering, AES depth-profiling 810
BE shifts, correlation with electronegativity 84
Benzene, adsorption on Ni(III), UPS spectrum 886
BEs, elemental 78 79
BEs, elemental, table 902—904
Bimetallic catalyst systems, cluster formation 770
Bimetallic catalyst systems, effects of alloying, XPS BEs 770
Bimetallic catalyst systems, effects of alloying, XPS peak widths 770
Brass adhesion to rubber 789—791
Brass adhesion to rubber, formation of sulphides 789
Brass adhesion to rubber, model compounds 789—790
Brass adhesion to rubber, schematic of chemical situation at interface 790
Bremsstrahlung background. X-ray sources 65
Bremsstrahlung use in XAES 181 492 511—512
BSE images, acquisition details 554 555
BSE images, atomic number dependence 554—555
BSE images, ceramic surface 554
BSE images, composite mineral 555
C (carbon), 1s energy as reference 172 315 628 758 763
C (carbon), 1s peak energy 69 166 172 315 627 758
C (carbon), 1s XPS spectrum, curve-fitted 180
C (carbon), 1s XPS spectrum, epoxy resin 628—629
C (carbon), 1s XPS spectrum, ethyl irifluoroacetate 61
C (carbon), 1s XPS spectrum, fibres 609—611 618—621 620-632
C (carbon), 1s XPS spectrum, hexafluoropropylene vinylidene fluoride 174
C (carbon), atomic mass standard 230
C (carbon), Auger spectra 103
C (carbon), graphitie 166 628
C (carbon), graphitie, line shape 166
C (carbon), graphitie, plasmon losses, electrons 166—167
C (carbon), in implantation profile 355
C (carbon), in polymers 172—173 336
C (carbon), in TiN, energetic positions 320
C (carbon), surface contaminant 166 175 313 659 758 783
C (carbon), surface contaminant, as energy reference 69 315
C (carbon), surface contaminant, line shape 166—167 625—626
C (carbon), XAES spectrum 163 172
C fibres, in composites 605—606
C fibres, in composites, coating 617
C fibres, in composites, AFM 613 788
C fibres, in composites, electron beam damage 609
| C fibres, in composites, FTIR and Raman spectroscopies 611—612
C fibres, in composites, ISS 614
C fibres, in composites, problems with conducting fibres in instrumentation 607
C fibres, in composites, SEM 612
C fibres, in composites, SIMS 614 788 804
C fibres, in composites, sputtering damage 609—610
C fibres, in composites, surface free energy 613
C fibres, in composites, TPD 614
C fibres, in composites, treatment for strong adhesion 787
C fibres, in composites, WDS 612
C fibres, in composites, XPS 614—638 787—788 802
C fibres, in composites, XRD (grazing incidence) 610—611
Catalysis, acid-base properties 769—770
Catalysis, acid-base properties, chemical shifts in XPS 769—770
Catalysis, acid-base properties, molecular probes 769—770
Catalysis, acid-base properties, N 1s shifts in pyridine as probe 769
Catalysis, acid-base properties, OH groups on supports 770
Catalysis, AES, charging problems 750
Catalysis, AES, damage problems 750 752
Catalysis, AES, poor quantification 750
Catalysis, AES, usefulness in model systems 750
Catalysis, applicability of surface techniques 749—752
Catalysis, applicability of surface techniques, usefulness of XPS 749
Catalysis, best practice references 749
Catalysis, bimetallic systems 770—771
Catalysis, bimetallic systems, cluster formation 770
Catalysis, bimetallic systems, multi-technique approach 771
Catalysis, bimetallic systems, particle size effects 770
Catalysis, bimetallic systems, Pt — Re and Pt — Sn reforming catalysts 771
Catalysis, bimetallic systems, use of EXAFS 770—771
Catalysis, bimetallic systems, use of XAS 771
Catalysis, bimetallic systems, use of XRD 771
Catalysis, catalyst parameters and appropriate techniques 748
Catalysis, charging problems 756—757
Catalysis, charging problems, ASTM guide 757
Catalysis, charging problems, elimination by use of 760
Catalysis, charging problems, methods of control 757
Catalysis, damage during analysis 752—753
Catalysis, damage during analysis, chemical reduction 752—753
Catalysis, damage during analysis, degradation index 752
Catalysis, damage during analysis, minimization of heat load from X-ray source 752
Catalysis, depth profiling 771—772
Catalysis, depth profiling, altered surface layers 772
Catalysis, depth profiling, chemical reduction 772
Catalysis, depth profiling, risk of misinterpretation 771—772
Catalysis, FABMS, association of Pt and Sn on 767 769
Catalysis, FABMS, support-related clusters 769
Catalysis, introduction 747—749
Catalysis, ISS, charge compensation 751
Catalysis, ISS, combination with XPS 752
Catalysis, ISS, surface specificity 751
Catalysis, multiple technique approach 748
Catalysis, quantitative surface analysis 772—776
Catalysis, quantitative surface analysis, coverage by ISS 775—776
Catalysis, quantitative surface analysis, crystallite growth 774
Catalysis, quantitative surface analysis, dispersion and coverage 773—775
Catalysis, quantitative surface analysis, errors in XPS intensity interpretation 775
Catalysis, quantitative surface analysis, extended layer models 774
Catalysis, quantitative surface analysis, heterogeneity of catalysts 772 775
Catalysis, quantitative surface analysis, homogeneity assumption 772 775
Catalysis, quantitative surface analysis, information sought 772
Catalysis, quantitative surface analysis, ISS intensities 775—776
Catalysis, quantitative surface analysis, layer model for XPS interpretation 773—774
Catalysis, quantitative surface analysis, sampling depths 750 772
Catalysis, quantitative surface analysis, sintering 774
Catalysis, quantitative surface analysis, XPS intensities 772—775
Catalysis, sample condition 749—750
Catalysis, sample condition, activated 749
Catalysis, sample condition, aged 749
Catalysis, sample condition, calcined 749
Catalysis, sample condition, deactivated 749
Catalysis, sample condition, poisoned 749
Catalysis, sample condition, precursor 749
Catalysis, sample condition, reduced 749
Catalysis, sample handling, ASTM guide 754
Catalysis, sample handling, protective atmosphere 754
Catalysis, sample mounting, deposition from solvent suspension 754
Catalysis, sample mounting, double-sided adhesive tape 754
Catalysis, sample mounting, pressed into grids or foils 754
Catalysis, sample mounting, wafers 754
Catalysis, sample preparation, on 755
Catalysis, sample preparation, outgassing problems 754
Catalysis, sample preparation, pellet grinding 754
Catalysis, sample preparation, spectral interference from binder 754
Catalysis, sample preparation, thin oxide film supports 755
Catalysis, sample preparation, treatment in preparation chamber 754
Catalysis, spatial resolution needs 750
Catalysis, SSIMS 766—769
Catalysis, SSIMS, cluster ions 766
Catalysis, SSIMS, high sensitivity requirement 766
Catalysis, SSIMS, model systems 769
Catalysis, SSIMS, nearest-neighbour information 766
Catalysis, SSIMS, recombination ambiguity 766
Catalysis, SSIMS, reference materials 766
Catalysis, SSIMS, Rh on 767—768
Catalysis, SSIMS, spectra databases 766
Catalysis, SSIMS, surface fragmentation 766
Catalysis, standardization 749
Catalysis, XPS, on 755
Catalysis, XPS, activation of -alumina 762
Catalysis, XPS, Auger parameter 760—763
Catalysis, XPS, BE particle size dependence 763
Catalysis, XPS, C 1s reference difficulties 758—759
Catalysis, XPS, chemical state plots 762
Catalysis, XPS, differential charging 756—757
Catalysis, XPS, noble metal particle references 758—759
Catalysis, XPS, particle size effects 763 765
Catalysis, XPS, support peaks as references 758
Catalysis, XPS, supported metal catalysts 763
Catalysis, XPS, use of transition metal shake-up peaks 761 763
Ceramics 543 576—586
Ceramics, adsorption 582 584—585
Ceramics, adsorption, ARXPS 585
Ceramics, adsorption, contact angle 582
Ceramics, adsorption, film thickness from XPS 585
Ceramics, adsorption, information from combined techniques 582
Ceramics, adsorption, organic molecules 582 584 585
Ceramics, analysis strategy 549 552
Ceramics, analysis strategy, chemical analysis 550
Ceramics, analysis strategy, physical imaging 548
Ceramics, analysis strategy, structural analysis 548—550
Ceramics, combined techniques 545
Ceramics, depth profiles 581
Ceramics, depth profiles, information from nuclear techniques 581
Ceramics, depth profiles, information from XPS 584
Ceramics, grain boundaries 580—581
Ceramics, grain boundaries, information from SAM 581 583
Ceramics, grain boundaries, information from SSIMS 581 583
Ceramics, grain boundaries, intergranular films 580
Ceramics, grain boundaries, TEM images 580—582
Ceramics, information requirements 543—547
Ceramics, ion implanted 368
Ceramics, phase structures 576—578
Ceramics, phase structures, characterisation by combined techniques 576—578
Ceramics, phase structures, information from diffraction techniques 576
Ceramics, phase structures, information from nuclear methods 576
Ceramics, phase structures, information from STM and AFM 576
Ceramics, phase structures, ion beam damage 577
Ceramics, phase structures, schematic distribution 576—577
Ceramics, phase structures, TEM image 576 578
Ceramics, surface characterisation requirements 543—544
Ceramics, surface modification 585—586
Ceramics, surface modification, Auger parameter 585—586
Ceramics, surface modification, silicates 585—586
Ceramics, surface modification, water vapour plasma 585
Ceramics, surface sites 579—580
Ceramics, surface sites, information from ISS 579—580
Ceramics, surface sites, modelling theory 580
Ceramics, surface sites, oxides 580
Ceramics, surface structures 578—579
|
|
|
Ðåêëàìà |
|
|
|