Авторизация
Поиск по указателям
Higham N.J. — Accuracy and Stability of Numerical Algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Accuracy and Stability of Numerical Algorithms
Автор: Higham N.J.
Аннотация: What is the most accurate way to sum floating point numbers? What are the advantages of IEEE arithmetic? How accurate is Gaussian elimination and what were the key breakthroughs in the development of error analysis for the method? The answers to these and many related questions are included here.
This book gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis. Software practicalities are emphasized throughout, with particular reference to LAPACK and MATLAB. The best available error bounds, some of them new, are presented in a unified format with a minimum of jargon. Because of its central role in revealing problem sensitivity and providing error bounds, perturbation theory is treated in detail.
Historical perspective and insight are given, with particular reference to the fundamental work of Wilkinson and Turing, and the many quotations provide further information in an accessible format.
The book is unique in that algorithmic developments and motivations are given succinctly and implementation details minimized, so that attention can be concentrated on accuracy and stability results. Here, in one place and in a unified notation, is error analysis for most of the standard algorithms in matrix computations. Not since Wilkinson's Rounding Errors in Algebraic Processes (1963) and The Algebraic Eigenvalue Problem (1965) has any volume treated this subject in such depth. A number of topics are treated that are not usually covered in numerical analysis textbooks, including floating point summation, block LU factorization, condition number estimation, the Sylvester equation, powers of matrices, finite precision behavior of stationary iterative methods, Vandermonde systems, and fast matrix multiplication.
Although not designed specifically as a textbook, this volume is a suitable reference for an advanced course, and could be used by instructors at all levels as a supplementary text from which to draw examples, historical perspective, statements of results, and exercises (many of which have never before appeared in textbooks). The book is designed to be a comprehensive reference and its bibliography contains more than 1100 references from the research literature.
Audience
Specialists in numerical analysis as well as computational scientists and engineers concerned about the accuracy of their results will benefit from this book. Much of the book can be understood with only a basic grounding in numerical analysis and linear algebra.
About the Author
Nicholas J. Higham is a Professor of Applied Mathematics at the University of Manchester, England. He is the author of more than 40 publications and is a member of the editorial boards of the SIAM Journal on Matrix Analysis and Applications and the IMA Journal of Numerical Analysis. His book Handbook of Writing for the Mathematical Sciences was published by SIAM in 1993.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2
Год издания: 2002
Количество страниц: 680
Добавлена в каталог: 19.06.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
LAPACK, linear system 191
LAPACK, LU factorization 178 191—192 257
LAPACK, matrix 1-norm estimator 292—294 477—478
LAPACK, matrix inversion 282—283
LAPACK, QR factorization 377—378
LAPACK, Sylvester equation 318
LAPACK, test matrix generation 525
LAPACK, triangular systems 153
LAPACK, underdetermined system 414
LAPACK, xlamch for determining machine parameters 495
Laratta, A. 413 414
Larson, John L. 485
Larsson, S. 29
Laszlo, Lajos 345
Latin, neoclassic, publishing papers in 456
Laub, Alan J. 298 315—318 523
Lawson, Charles L. 375 376 399 402 403 414 499
Least significant digit 36
Least squares problem 382
Least squares problem, augmented system 383
Least squares problem, augmented system, scaling and conditioning of 391
Least squares problem, backward error 392—395 406
Least squares problem, iterative refinement 388—391 403
Least squares problem, linear equality constrained 396—400
Least squares problem, linear equality constrained, backward error 405
Least squares problem, linear equality constrained, elimination method 399—400
Least squares problem, linear equality constrained, method of weighting 397
Least squares problem, linear equality constrained, null space method 397—399
Least squares problem, linear equality constrained, perturbation theory 396
Least squares problem, linear inequality constrained 405
Least squares problem, Longley test problem 402
Least squares problem, modified Gram — Schmidt, error analysis 386
Least squares problem, normal equations 382 405
Least squares problem, normal equations, error analysis 386—388
Least squares problem, normal equations, versus QR factorization 388
Least squares problem, perturbation theory 382—384
Least squares problem, QR factorization, error analysis 384—385
Least squares problem, quadratic constrained 405
Least squares problem, seminormal equations 391—392
Least squares problem, weighted 395
LeBlanc, E. 483
Lee, King 446 447
Lefevre, Vincent 50
Lehmer, D.H. 527
Lehoucq, Richard B. 563
Leja ordering 100 101 103 104 427
Lemeire, Prans 152
Leoncini, M. 282
Leuprecht, H. 88
Level index arithmetic 49
LeVeque, Randall J. 11 29
Lewis, John G. 29 188 219 227 299 302 524
Lewis, Robert Michael 472
Li, Kim-Hung 524
Li, T.Y. 282
Li, Xiaoye S. 232 492
Lickteig, Thomas 447
Linear system, large dense, in applications 191
Linear system, perturbation theory 119—137
Linear system, practical forward error bounds 131
Linear system, records for largest solved 191
Linear system, scaling before Gaussian elimination 177—179 190
Linear system, times for solution on early computers 185
Linnainmaa, Seppo 49 76 84 90 501
LINPACK 579
LINPACK, Cholesky factorization of semidefinite matrix 207
LINPACK, condition estimator 295—297 302
LINPACK, iterative refinement 241
LINPACK, LU factorization 178
LINPACK, matrix inversion 264 268 269 271
LINPACK, tridiagonal system solution 303
Linz, Peter 90
Linzer, Elliot 456
Liu, Joseph W.H. 209 227
log(1+x), accurate evaluation 32
Logarithmic distribution of numbers 47 49
Longley test problem 402
Longley, James W. 402
Lotti, Grazia 443 444
LU factorization 161; see also “Gaussian elimination”
LU factorization a posteriori stability tests 180—181
LU factorization complete pivoting 158; see also “Complete pivoting”
LU factorization Crout's method 163
LU factorization error analysis 163—166
LU factorization error analysis, history of 183—187
LU factorization existence and uniqueness 161
LU factorization for nonsymmetric positive definite matrix 208—209
LU factorization growth factor 165—173; see also “Growth factor”
LU factorization loop orderings 187
LU factorization of diagonally dominant matrix 170—172
LU factorization of Hessenberg matrix 24—25
LU factorization of tridiagonal matrix 174
LU factorization partial pivoting 158 162;
LU factorization perturbation bounds 181—182
LU factorization pivoting strategy, choice of 178—179
LU factorization rank-revealing 182—183
LU factorization rook pivoting 159; see also “Rook pivoting”
LU factorization scaling, row and column 177—179
LU factorization stability for M-matrix 190
LU factorization threshold pivoting 193
LU factorization versus Cramer's rule 13—14
LU factorization without pivoting, instability of 15
LU factorization, determinantal formulae for factors 161
LU factorization, Doolittle's method 162—163
LU factorization, parallel variants of 179—180
LU factorization, partitioned 246
LU factorization, partitioned, error analysis of 249—250
LU factorization, recursively partitioned 248
Lu, Hao 429
Luszczek, Piotr 232
Lyapunov equation 311
Lyapunov equation, backward error 311—312
Lyapunov equation, discrete-time 316—317
Lynch, Thomas W. 56
Lyness, J.N. 429
Lynn, M. Stuart 323
M-matrix 145 152
M-matrix, stability of LU factorization 190
M-matrix, triangular 145—147
Mac Lane, Saunders 479
Machar code 495
Machine epsilon 37
Macleod, Allan J. 189
Magic square matrix, p norm of 115
Makhoul, John 210
Malajovich, Gregorio 288
Malcolm, Michael A. 29 86 88 188 245 260 302 495 506 522
Malyshev, Alexander N. 152 282 404 405
Manne, F. 448
Manteuffel, Thomas A. 152
Mantissa 36
Maple 6 170 502
Markov chain, perturbation analysis for 133
Marovich, Scott B. 570
Martin, R.S. 188
Mascarenhas, Walter 189
Mathematica 6 170 502
Mathias, Roy 152 208 377 514
MATLAB 3 575
MATLAB gallery 512 513 583
MATLAB gallery (“chebspec”) 348 513
MATLAB gallery (“clement”) 239 513
MATLAB gallery (“frank”) 463
MATLAB gallery (“kalian”) 513
MATLAB gallery (“orthog”) 239 473 477 513
MATLAB gallery (“pei”) 513
MATLAB gallery (“randsvd”) 513 517 524 525
MATLAB gallery (“toeppen”) 513 525
MATLAB gallery (“tridiag”) 513
MATLAB, compan 513 523
MATLAB, condest xxii 295
MATLAB, eig 464
MATLAB, eps 39
MATLAB, fft 454
MATLAB, frank 513
MATLAB, hadamard 513
MATLAB, hilb 51
MATLAB, ifft 454
MATLAB, inv 261 268
MATLAB, invhilb 51
MATLAB, magic 51
MATLAB, Matrix Computation Toolbox 583—585
MATLAB, normestl 295
MATLAB, pascal 513 524
MATLAB, pow2 493
MATLAB, rand 513 516
MATLAB, randn 513 516
MATLAB, rcond 294
MATLAB, realmax 39
MATLAB, realmin 39
MATLAB, roots 480
MATLAB, Symbolic Math Toolbox 3 6 463 514 519
MATLAB, toeplitz 513
MATLAB, vander 513
Matrix adjugate 282
Matrix block diagonally dominant 251
Matrix circulant 454
Matrix commutation 317
Matrix companion 522—523
Matrix comparison 145
Matrix condition number 109 110 114 382
Matrix confluent Vandermonde-like 419
Matrix convergent 332 340
Matrix correlation 525
Matrix diagonally dominant 172
Matrix distance to singularity 111 127
Matrix group inverse 331
Matrix inversion 259—285; see also “Inverse matrix”
Matrix involutary 519
Matrix irreducible 127
Matrix magic square 115
Matrix Market 524
Matrix moment 518
Matrix multiplication backward error 77
Matrix multiplication error analysis 69—71 78
Matrix multiplication fast methods 433—449
Matrix norm see “Norm”
Matrix polynomials 102
Matrix second difference 522
Matrix test 511—525
Matrix, Cauchy 514—515
Matrix, Drazin inverse 331—332
Matrix, Fourier 168
Matrix, Frank 463
Matrix, Hadamard 116 168 170 193
Matrix, Hilbert 512—515 523—524
Matrix, Kahan 149 154 205
Matrix, M-matrix 145 152
Matrix, nonsymmetric positive definite 208
Matrix, Pascal 518—521
Matrix, Pei 284 304
Matrix, powers of 339—352; see also “Powers of a matrix”
Matrix, pseudo-inverse 382 402 405 408
Matrix, random 515—518
Matrix, randsvd 517—518 525
Matrix, semiconvergent 332
Matrix, skew-symmetric 214 225
Matrix, submatrices, number of 192
Matrix, Sylvester's introduction of term 305
Matrix, symmetric indefinite 214
Matrix, symmetric positive definite 196
Matrix, symmetric positive semidefinite 201
Matrix, symmetric quasidefinite 229
Matrix, totally nonnegative 164
Matrix, tridiagonal 174—176
Matrix, tridiagonal, Toeplitz 521—522
Matrix, Vandermonde 416
Matrix, Vandermonde-like 418
Matrix, vec-permutation 314 317
Matsui, Shouichi 49
Mattheij, R.M.M. 257
Matula, David W. 49 53 57
Mazzia, Francesca 190
McCarthy, Charles 133
McCracken, Daniel D. 76 90 102
McKeeman, William Marshall 188 240
McKenney, Alan 317 524
McKinnon, K.I.M. 476
Mead, J.L. 180
Meaningless answers, why you might get them 30—31
Meinguet, Jean 209 281
Mendelsohn, N.S. 283
Mer, Ole 83
Metropolis, N. 486
Meurant, Gerard 257 302
Meyer, Jr., Carl D. 133 332
Milenkovic, Victor J. 29
Miller, D.F. 317
Miller, Webb 76 104 438 441 471 484 485 504 515 570
Miranker, Willard L. 483
Mirsky, L. 554
Misconceptions, of floating point arithmetic 28
Mixed forward-backward error 7 456
Moler, Cleve B. 29 30 55 76 86 152 186 188 190 231 235 240 242 245 259 260 279 295 302 317 339 342 352 381 407 429 500 505 507 523
Moment matrix 518
Monotone norm 107
Monotonicity of floating point arithmetic 56
Monotonicity of rounding 38
Montgomery, D. 183
Moore — Penrose conditions 405
Moore, J. Strother 56
Moore, Ramon E. 483
Morrison, Donald 500 507
Most significant digit 36
Mueller, K.H. 102
Mukherjea, Kalyan 374
Muller, Jean-Michel 32 50
Multidirectional search method 475—477
Multiple precision arithmetic 501—503
Multiple precision arithmetic, Bailey's package MPFUN 501—502
Multiple precision arithmetic, Brent's package 483 501
Multiple precision arithmetic, GNU MP library 502
Murakami, H. 480
Murray, Walter 210 226 227 413 476
Mutation testing 515—516
NAG Library 575
NAG Library, LAPACK in 580
NAG Library, machine constants 497
Nan (not a number) 41—42 490 492
Nash, Stephen G. 308 319 381 562
Nashed, M. Zuhair 402
Neal, Larry 188
Nelder — Mead simplex method 476—477
NETLIB 574—575
Neumaier, A. 57 85
Neumann, M. 190
Neville elimination 180 189
Newbery, A.C.R. 102 103
Newcomb, Simon 47
Newman, Morris 512 518
Newton — Schulz iteration 183
Newton's method 460
Newton's method for eigenproblem 463—464
Newton's method for matrix inverse 278
Newton's method for reciprocation 46
Newton's method limiting accuracy 461
Newton's method limiting residual 462
Newton's method stopping criteria 467—468
Newton's method, inexact 468
Newton's method, sources of error in 460
Реклама