Авторизация
Поиск по указателям
Higham N.J. — Accuracy and Stability of Numerical Algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Accuracy and Stability of Numerical Algorithms
Автор: Higham N.J.
Аннотация: What is the most accurate way to sum floating point numbers? What are the advantages of IEEE arithmetic? How accurate is Gaussian elimination and what were the key breakthroughs in the development of error analysis for the method? The answers to these and many related questions are included here.
This book gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis. Software practicalities are emphasized throughout, with particular reference to LAPACK and MATLAB. The best available error bounds, some of them new, are presented in a unified format with a minimum of jargon. Because of its central role in revealing problem sensitivity and providing error bounds, perturbation theory is treated in detail.
Historical perspective and insight are given, with particular reference to the fundamental work of Wilkinson and Turing, and the many quotations provide further information in an accessible format.
The book is unique in that algorithmic developments and motivations are given succinctly and implementation details minimized, so that attention can be concentrated on accuracy and stability results. Here, in one place and in a unified notation, is error analysis for most of the standard algorithms in matrix computations. Not since Wilkinson's Rounding Errors in Algebraic Processes (1963) and The Algebraic Eigenvalue Problem (1965) has any volume treated this subject in such depth. A number of topics are treated that are not usually covered in numerical analysis textbooks, including floating point summation, block LU factorization, condition number estimation, the Sylvester equation, powers of matrices, finite precision behavior of stationary iterative methods, Vandermonde systems, and fast matrix multiplication.
Although not designed specifically as a textbook, this volume is a suitable reference for an advanced course, and could be used by instructors at all levels as a supplementary text from which to draw examples, historical perspective, statements of results, and exercises (many of which have never before appeared in textbooks). The book is designed to be a comprehensive reference and its bibliography contains more than 1100 references from the research literature.
Audience
Specialists in numerical analysis as well as computational scientists and engineers concerned about the accuracy of their results will benefit from this book. Much of the book can be understood with only a basic grounding in numerical analysis and linear algebra.
About the Author
Nicholas J. Higham is a Professor of Applied Mathematics at the University of Manchester, England. He is the author of more than 40 publications and is a member of the editorial boards of the SIAM Journal on Matrix Analysis and Applications and the IMA Journal of Numerical Analysis. His book Handbook of Writing for the Mathematical Sciences was published by SIAM in 1993.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2
Год издания: 2002
Количество страниц: 680
Добавлена в каталог: 19.06.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
definition 59
problems, reliable solution of 497—498
(error constant) definition 63
(error constant) properties 67
(IEEE arithmetic) 42 490 492
factorization 197
(error constant) 68
3M method 437—438 447—448 502
3M method, error analysis 444—446
Aasen's method 222—225
Aasen's method, growth factor 224
Aasen, Jan Ole 214 222 224 227
Abdelmalek, Nabih N. 376 403
Abramowitz, Milton 30
Absolute error 3
Absolute norm 107
Accuracy versus precision 6 28
ACRITH 483
Acton, Forman S. 30 195 283 486
Adams, Duane A. 103
Adjugate matrix 282
Aelfric xxi
Aggarwal, Vijay B. 76
Ahac, Alan A. 190
Ahlberg, J.H. 154
Aitken extrapolation 91
Aitken, Alexander Craig 91 374
Albers, Donald J. 511
Alefeld, Goeltz 483
Alexopolous, Aristides G. 49
Allen, Jr., Richard C. 76
Almacany, Montaha 415
Alt, H. 447
Alternating directions method 474—475
Aluru, Srinivas 446
Alvarado, Fernando L. 153
Amato, James J. 317
Amodio, Pierluigi 190
Anda, Andrew A. 376
Anderson, Edward 287 397 404
Anderson, Iain J. 88
Anderson, T.W. 524 525
Ando, T. 188
Antonov, A.G. 285
Arioli, Mario 130 301 324 337 402—404 413 414
Arnold, William F. 318
Ashcraft, Cleve 188 219 227
Ashenhurst, R.L. 486
Asplund, Edgar 302
Atanasoff, John V. 139
Atlas 579
Augment precompiler 483 501
Augmented system 383
Augmented system, iterative refinement on 389
Augmented system, scaling and conditioning 391
Automatic Computing Engine (ACE) 53 185 188 337
Automatic differentiation 485
Automatic error analysis 471—487; see also “Interval analysis” “Running
Automatic error analysis using direct search optimization 472—474
Automatic error analysis, condition estimation 477—478
Automatic error analysis, roots of a cubic 479—481
Automatic error analysis, Strassen's inversion method 478—479
Axelsson, Owe 337
Babuska, Ivo 90
Bachelis, Boris 50
Back substitution 140
Backward error 6—7
Backward error analysis in differential equations 29
Backward error analysis, development by Wilkinson 29—30 185—186
Backward error analysis, motivation 6
Backward error analysis, not a panacea 1
Backward error analysis, purpose 65 195
Backward error columnwise 122
Backward error linear system, Oettli — Prager theorem 122
Backward error linear system, Rigal — Gaches theorem 12 120
Backward error Lyapunov equation 311—312
Backward error, componentwise 122 128
Backward error, componentwise relative 122
Backward error, componentwise, evaluating 130
Backward error, definition 6
Backward error, least squares problem 392—395 406
Backward error, mixed forward-backward error 7 456
Backward error, normwise 120
Backward error, normwise relative 120
Backward error, preserving symmetric structure 394—395
Backward error, row-wise 122
Backward error, structured 129
Backward error, Sylvester equation 308—311
Backward error, symmetric structure, preserving 136
Backward error, underdetermined system 411
Backward stability, componentwise 129
Backward stability, definition 7
Backward stability, normwise 129
Backward stability, row-wise 130
Bai, Zhaojun 317 346 397 404 524
Bailey, David H. 436 446—448 457 478 489 501 502
Baksalary, J.K. 318
Balle, Susanne M. 448
Ballester, C. 429
Banded matrix, growth factor 173
Bank, Randolph E. 257
Bareiss, E.H. 49 189
Bargmann, V. 183
Barlow, Jesse L. 29 47 49 181 189 299 376 397
Barnett, S. 317
Barone, John L. 381 402
Barrett, Geoff 56
Barrlund, Anders 181 190 209 405
Bartels — Stewart method 307—308
Bartels, R.H. 307
Bartels, Sven G. 129 301 429
Base of floating point arithmetic 36
Bau III, David 169 337
Bauer's scaling theorem 127 133
Bauer, F.L. 53 76 107 114 127 133 135 177 281 547
Beam, Richard M. 525
Beaton, Albert E. 381 402
Bell, E.T. 279
Bellman, Richard 318
Benford, Frank 47
Benoit, Commandant 209
Benschop, N.F. 323
Berman, Abraham 133 152
Bhatia, Rajendra 317 374
Bilinear noncommutative matrix multiplication algorithm 436—437
Bilinear noncommutative matrix multiplication algorithm, error analysis 443—444
Binary-decimal conversion 57
Bini, Dario 429 443 444
Birkhoff, Garrett 279 479
Bischof, Christian H. 297—299 363 376
Bit 56
Bjoerck, Ake 76 241 353 371 375—377 379 380 386 388 389 391 391 392 399 402—405 413 414 423 423 425 429 565
Bjorstad, Petter 448
Blanch, G. 505
BLAS (Basic Linear Algebra Subprograms) 578
BLAS (Basic Linear Algebra Subprograms), Extended and Mixed Precision 64 241 462 503 579
BLAS (Basic Linear Algebra Subprograms), fast level 3 447
BLAS (Basic Linear Algebra Subprograms), Technical Forum Standard 503 579
BLAS (Basic Linear Algebra Subprograms), xnrm2 (2-norm) 499—500 507
Bliss, B. 485
Block algorithm, advantages of 245
Block algorithm, definition 246
Block diagonal dominance 251—255 257
Block diagonal dominance and block LU factorization 252—255
Block diagonal dominance, definition 251
Block LDLl factorization (of skew-symmetric matrix) 225—226
Block LDLl factorization (of skew-symmetric matrix), growth factor 226
Block LDLT factorization (of symmetric matrix) 214—222
Block LDLT factorization (of symmetric matrix) for tridiagonal matrix 221—222
Block LDLT factorization (of symmetric matrix), complete pivoting and its stability 215—216
Block LDLT factorization (of symmetric matrix), growth factor, complete pivoting 216
Block LDLT factorization (of symmetric matrix), growth factor, partial pivoting 218
Block LDLT factorization (of symmetric matrix), growth factor, rook pivoting 221
Block LDLT factorization (of symmetric matrix), partial pivoting and its stability 216—219
Block LDLT factorization (of symmetric matrix), rook pivoting and its stability 219—221
Block LU factorization 246 247
Block LU factorization computation 247
Block LU factorization error analysis 250—256
Block LU factorization existence and uniqueness 247
Block LU factorization stability for (point) diagonally dominant matrix 254—255
Block LU factorization stability for block diagonally dominant matrix 251—255
Block LU factorization stability for block tridiagonal matrix 257
Block LU factorization stability for symmetric positive definite matrix 255—256
Blue, James L. 499
Bodewig, E. 185
Bohlender, Gerd 88
Bohte, Z. 173
Boley, Daniel 242
Bollen, Jo A.M. 323
Bondeli, S. 522
Boros, T. 429
Borwein, J.M. 489
Borwein, P.B. 48
Bowden, B.V. 19
Bowdler, H.J. 188
Boyd, David W. 289 291 301
Boyle, Jeff 47
Brent, Richard P. 47 150 151 436 439 440 447 483 501 505
Brezinski, Claude 209
Briggs, William L. 456
Brightman, Tom 56
Brown, W.S. 495 498 49
Brunet, Marie-Christine 485 486
Buchan, John 57
Buchanan, James L. 152
Buchholz, W. 56
Bukhberger, B. 302
Bulirsch, R. 76 187
Bunch — Kaufman partial pivoting strategy 216—219
Bunch — Parlett complete pivoting strategy 215—216
Bunch, James R. 129 133 136 213 215 216 221 225—227 231
Buoni, John J. 190
Burdakov, Oleg 282
Burgmeier, James W. 76
Businger, Peter A. 133 180 403
Butcher, J.C. 90
Byers, Ralph 302 315 318 319 346 562
BYTE 56
Caffney, John 518
Calculator, displaying words on 32
Calvetti, D. 428—430
Calvin (and Hobbes) 471
Campbell, S.L. 332
Campbell-Kelly, Martin 245
Cancellation 9—10 27
Cancellation in summation 83 539
Cancellation not a bad thing 10
Cancellation of rounding errors 19—22
Cao, Wei-Lu 302
Caprani, Ole 90
Cardano, Geronimo 479
Carr III, John W. 53
Carter, Russell 493 494
Cauchy matrix 514—515
Cauchy matrix determinant 515
Cauchy matrix inverse 515
Cauchy matrix LU factors 515
Cauchy — Schwarz inequality 106
Cauchy, August in-Louis 515
Cayley, Arthur 434
CELEFUNT package 496
CESTAC 486
Chaitin-Chatelin, Francoise 351 468 485 486
Chan, N.N. 524
Chan, Raymond H. 457
Chan, Tony F. 11 29 133 134 189 377
Chandrasekaran, Shivkumar 123 129 377
Chang, Xiao-Wen 190 209 377
Chartres, Bruce A. 186
Chatelin, Francoise see “Chaitin-Chatelin Frangoise”
Chebyshev spectral differentiation matrix 340 348
Cheng, Sheung Hun 219 221 224 227 295
Cho, Choong Yun 515
Choi, Man-Duen 511 523
Cholesky factorization 196
Cholesky factorization conditions for success in floating point 200
Cholesky factorization error analysis 197—200
Cholesky factorization existence and uniqueness 196
Cholesky factorization perturbation bounds 201
Cholesky factorization semidefinite matrix, complete pivoting 202
Cholesky factorization semidefinite matrix, computation of 202
Cholesky factorization semidefinite matrix, error analysis 205—208
Cholesky factorization semidefinite matrix, existence and uniqueness 201
Cholesky factorization semidefinite matrix, perturbation theory 203—205
Cholesky factorization semidefinite matrix, termination criteria 207—208
Cholesky factorization, computation of 197
Cholesky, Andre-Louis 209
Chopping 54
Christiansen, Soren 133
Chu, Eleanor 181
Chu, King-wah Eric 318
Chu, Moody T. 525
Circulant matrix 454
Circulant system, error analysis for solution by FFT 454—456
Clasen, B.-L. 281
Clenshaw, C.W. 49 102
Cline, Alan K. 287 295 297 404
Cline, R.E. 413
Clinger, William D. 57
Codenotti, B. 282
Cody, Jr., William J. 51 55 56 493 495 496 501
Cohen, A.M. 169 170 520
Colon notation 2
Commutation matrix 317
Companion matrix 522—523
Companion matrix, singular values 523
Comparison matrix 145
Compensated summation 83—88
Complete pivoting 158
Complete pivoting for symmetric indefinite matrices 215—216
Complete pivoting growth factor 169—170 189
Complete pivoting growth factor, conjecture proved false 170
Complete pivoting, early use of 188
Complete pivoting, fallacious criticism of 193
Complete pivoting, use of, in practice 188 562
Complex arithmetic, error analysis 71—73 77
Complex number division without overflow 500 506
Complex number, square root of 32
Componentwise relative error 4
Concus, P. 257
Condition number minimizing by scaling 123 125—127 133
Condition number of function 8
Condition number of linear system componentwise 123
Condition number of linear system normwise 121
Condition number of matrix (rectangular) 382
Condition number of matrix (square) 109 110 114
Condition number of nonlinear system 464—467
Condition number of summation 91
Condition number, distance to singularity and 111 114 127
Condition number, estimation 287—304
Condition number, estimation for tridiagonal matrices 299—301
Condition number, estimation, asymptotic cost 288
Condition number, estimation, block 1-norm estimator 294—295
Condition number, estimation, counterexamples 287 288 292—294 297 302
Condition number, estimation, counterexamples by direct search 477—478
Condition number, estimation, incremental 298
Condition number, estimation, LAPACK estimator 292—294 477—478
Condition number, estimation, LINPACK estimator 295—297
Condition number, estimation, probabilistic methods 297—298
Condition number, general theory 29
Реклама