Авторизация
Поиск по указателям
Higham N.J. — Accuracy and Stability of Numerical Algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Accuracy and Stability of Numerical Algorithms
Автор: Higham N.J.
Аннотация: What is the most accurate way to sum floating point numbers? What are the advantages of IEEE arithmetic? How accurate is Gaussian elimination and what were the key breakthroughs in the development of error analysis for the method? The answers to these and many related questions are included here.
This book gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis. Software practicalities are emphasized throughout, with particular reference to LAPACK and MATLAB. The best available error bounds, some of them new, are presented in a unified format with a minimum of jargon. Because of its central role in revealing problem sensitivity and providing error bounds, perturbation theory is treated in detail.
Historical perspective and insight are given, with particular reference to the fundamental work of Wilkinson and Turing, and the many quotations provide further information in an accessible format.
The book is unique in that algorithmic developments and motivations are given succinctly and implementation details minimized, so that attention can be concentrated on accuracy and stability results. Here, in one place and in a unified notation, is error analysis for most of the standard algorithms in matrix computations. Not since Wilkinson's Rounding Errors in Algebraic Processes (1963) and The Algebraic Eigenvalue Problem (1965) has any volume treated this subject in such depth. A number of topics are treated that are not usually covered in numerical analysis textbooks, including floating point summation, block LU factorization, condition number estimation, the Sylvester equation, powers of matrices, finite precision behavior of stationary iterative methods, Vandermonde systems, and fast matrix multiplication.
Although not designed specifically as a textbook, this volume is a suitable reference for an advanced course, and could be used by instructors at all levels as a supplementary text from which to draw examples, historical perspective, statements of results, and exercises (many of which have never before appeared in textbooks). The book is designed to be a comprehensive reference and its bibliography contains more than 1100 references from the research literature.
Audience
Specialists in numerical analysis as well as computational scientists and engineers concerned about the accuracy of their results will benefit from this book. Much of the book can be understood with only a basic grounding in numerical analysis and linear algebra.
About the Author
Nicholas J. Higham is a Professor of Applied Mathematics at the University of Manchester, England. He is the author of more than 40 publications and is a member of the editorial boards of the SIAM Journal on Matrix Analysis and Applications and the IMA Journal of Numerical Analysis. His book Handbook of Writing for the Mathematical Sciences was published by SIAM in 1993.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2
Год издания: 2002
Количество страниц: 680
Добавлена в каталог: 19.06.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Condition number, Hadamard 279 282 284
Condition number, Skeel's 123
Conjugate gradient method 324 336
Conjugate gradient method, circulant preconditioner 457
Conn, Andrew R. 297
Conte, Samuel D. 187
Continued fraction, algorithms and error analysis 505
Continued fraction, evaluating in IEEE arithmetic 490—491
Continued fraction, running error bound 77
Convergent matrix 332 340
Conversion, binary-decimal 57
Cooley, James W. 456
Coomes, Brian A. 29
Coonen, Jerome T. 55 493
Cope, J.E. 132
Coppersmith, Don 436
Correct significant digits 3—4 28
Correlation matrix 525
Cortes, Joaquin 189
Cottle, Richard W. 209
Cox, Anthony J. 362 375 395 396 398 400 404 405
Cramer's rule, (in)stability of 13—14 30 33
Cray computers 669
Cray computers, adoption of IEEE arithmetic 44
Cray computers, arithmetic on 35 493
Cray computers, puzzling results from Cray Y-MP and Cray 2 493—494
Cray computers, UNICOS library 436 438
Crout's method 163
Crout, Prescott D. 187
Cryer, Colin W. 169 170 188 189
CS decomposition 380 400
Csanky, L. 278
Cubic equation, Newton's method 486—487
Cubic equation, stability of explicit formulae for roots 479—481
Curtis, A.R. 190
Cuyt, Annie 496
Cybenko, George 210
Cyclic reduction 190
Dahlquist, Germund 76 147
Daniel, J.W. 376
Datta, Karabi 311
Davies, Philip L. 525
Davis, Philip J. 90 457
Dax, Achiya 227 332
Day, David 524
Day, Jane M. 189
de Boor, Carl 186—188
de Jong, Lieuwe Sytse 29
de Rijk, P.P.M. 402—404
Dekker, T.J. 53 84 282 501
del Ferro, Scipione 479
Demeure, Cedric J. 429
Demmel, James W. 42 49 56 57 77 90 115 128—130 136 152 182 188 191 198—200 209 232 242 249—253 256 257 282 288 301 317 337 346 409 413 414 483 492 496 501 515 524 534
Dennis, Jr., John E. 323 468 475 476
Denormalized numbers see “Subnormal numbers”
Departure from normality (Henrici's) 344—345
Descloux, J. 469
Determinant 279—280
Determinant perturbation bound 285
Determinant, computation of 279—280
Determinant, of upper Hessenberg matrix 24—25
Determinant, testing sign of 282
Dhillon, Inderjit S. 56 301 304 534
Diagonal dominance 172; see also “Block diagonal dominance”
Diagonally dominant matrix and block LU factorization 254—255
Diagonally dominant matrix, Gaussian elimination, error bounds for 177
Diagonally dominant matrix, growth factor, bound for 172
Diagonally dominant matrix, inverse by Gauss — Jordan elimination, error bound for 277
Diagonally dominant matrix, inverse, bound for 154
Diagonally dominant matrix, nonsingularity of 190
Diagonally dominant matrix, triangular, bound for cond 144
Diagonally dominant matrix, tridiagonal, bound for inverse 300
Diagonally dominant matrix, tridiagonal, bound for LU factors 175
Diament, Benjamin 288
Diamond, Harold G. 57
Differential equations see “Ordinary differential equations”
Direct search optimization methods 474—477
Discretization error 5
Distance to singularity, componentwise 127
Distance to singularity, normwise 111
Divided differences 21 99—101
Divided differences, confluent 419—420
Dixon, John D. 298
Dongarra, Jack J. 185 187 226 231 232 256 397 404 496 524 573
Doolittle's method 162—163 187
Doolittle, Myrick Hascall 187
Dorn, William S. 76 90 102
Double rounding 43 58
Douglas, Craig C. 446 569
Douglas, Jr., Jim 185
Doyle, Sir Arthur Conan 287
Drake, J.B. 25
Drazin inverse 331—332
Drift in floating point arithmetic 54
Drmac, Zlatko 210
Du Croz, Jeremy J. 262 269 281
Dual norm 107
Dual vector 107
Dubrulle, Augustin A. 282 507
Duff, Iain S. 131 187 193 226 227 256 301 337 402—404 524
Dumitrescu, Bogdan 447
Duncan, Martin 87
Dunham, C.B. 415
Dwyer, Paul S. 15
Eckart, Carl 114
Edelman, Alan 59 150 169 170 189 191 284 377 480 516 516 524 532
Effective conditioning 133
Egecioglu, Oemer 103
Eijkhout, Victor 232
Eirola, Timo 29
EISPACK 579
Elden, Lars 396 404
Eldersveld, Samuel K. 257
ELEFUNT package 496
Elementary functions 50
Elfving, Tommy 429
Emel'yanenko, G.A. 302
Enright, Wayne H. 29
Equilibration 123 126 178
Erisman, A.M. 180 181 186 193
Error analysis see “Rounding error analysis”
Error, absolute 3
Error, mixed forward-backward error 7 456
Error, relative 3 4
Error, sources of 5—6
Espelid, Terje O. 90
ESSL library (IBM) 436 438
Euler's method, with compensated summation 86
expml function 30
Faddeeva, V.N. 188
Fairgrieve, Thomas F. 50 528
Fallat, Shaun M. 189
Fan, Ky 377
Fan-in algorithm 152
Fan-in algorithm for summation 80
Fan-in algorithm for triangular system solution 149—151
Farebrother, R.W. 402
Farkas, I. 103
Farnum, Charles 494 494
Fast Fourier Transform 451—457
Fast Fourier transform for solving circulant systems 454—456
Fast Fourier transform, Cooley — Tukey factorization of DFT matrix 452
Fast Fourier transform, error bound 453
Fast Fourier transform, inverse transform 454
Fast matrix multiplication 433—449
Fast matrix multiplication in the level-3 BLAS 447
Fast matrix multiplication, 3M method for complex multiplication 437—438
Fast matrix multiplication, bilinear noncommutative algorithm 436—437
Fast matrix multiplication, deriving methods 446
Fast matrix multiplication, error analysis 438—446
Fast matrix multiplication, Miller's error results 438
Fast matrix multiplication, record exponent 436
Fast matrix multiplication, Strassen's method 434—436
Fast matrix multiplication, Strassen's method, Winograd's variant 435—436 442—443
Fast matrix multiplication, Winograd's method 434
Fateman, Richard J. 55
Feingold, David G. 257
Feldstein, A. 57
Ferguson, H.R.P. 448 478
Ferguson, Jr., Warren E. 45 56
Ferng, William R. 299
FFT see “Fast Fourier transform”
FFTW 457
Fike, C.T. 93 104
Fischer, Patrick C 446
Fixed point arithmetic 53
Fl operator (rounding) 38
Flannery, Brian P. 476 487 505
Fletcher, Roger 133 136 188 210 227
Floating point arithmetic 35—60
Floating point arithmetic base 36
Floating point arithmetic base, choice of 47 56
Floating point arithmetic chopping 54
Floating point arithmetic guard digit see “Guard digit”
Floating point arithmetic mantissa 36
Floating point arithmetic model 54 498—499
Floating point arithmetic model with underflow 56—57
Floating point arithmetic model without guard digit 44
Floating point arithmetic model, Brown's 495 498—499
Floating point arithmetic model, complex arithmetic 71
Floating point arithmetic model, standard 40
Floating point arithmetic multiple precision 501—503
Floating point arithmetic parameters for selected machines 3
Floating point arithmetic parameters in software, specifying 496—497
Floating point arithmetic representation error 47
Floating point arithmetic rounding see “Rounding” ”Double
Floating point arithmetic significand 36
Floating point arithmetic software issues 489—509
Floating point arithmetic speed of operations (relative) 56
Floating point arithmetic subnormal numbers 37 42 492
Floating point arithmetic subtraction done exactly 45
Floating point arithmetic unit roundoff 3 38
Floating point arithmetic wobbling precision 39 47
Floating point arithmetic, alternatives to 49
Floating point arithmetic, banned from safety-critical systems 496
Floating point arithmetic, binary-decimal conversion 57
Floating point arithmetic, compiler optimization, dangers of 494
Floating point arithmetic, complex arithmetic, error analysis 71—73
Floating point arithmetic, determining properties of 494—495
Floating point arithmetic, drift in 54
Floating point arithmetic, earliest subroutines 35
Floating point arithmetic, elementary functions 50
Floating point arithmetic, formal op algebra 54—55
Floating point arithmetic, fused multiply-add operation 46—47 60
Floating point arithmetic, gradual underflow see “Gradual underflow”
Floating point arithmetic, IEEE arithmetic see “IEEE arithmetic”
Floating point arithmetic, Language Independent Arithmetic (LIA-1) 499
Floating point arithmetic, monotonic 56
Floating point arithmetic, testing accuracy of 51—52
Floating point arithmetic, testing correctness of 495—496
Floating point coprocessors 42
Floating point numbers characterization 36
Floating point numbers, normalized 36
Floating point numbers, spacing between 37
Floating point numbers, subnormal 37 42
Floating point numbers, testing for equality 493
FLOP 3
Forsgren, Anders 210 226
Forsythe, George E. 29 30 48 53 76 86 126 133 152 186 188 190 235 240 242 245 259 260 279 302 321 489 523
FORTRAN 95
Fortran, environmental inquiry functions 495
Fortran, matmul 447
Forward error 6—7
Forward error for linear system 12
Forward error, definition 6
Forward error, linearized expression for 484
Forward error, mixed forward-backward error 7 456
Forward stability componentwise 130
Forward stability normwise 130
Forward stability, definition 9
Forward substitution 141
Foster, Leslie V. 159 167 170 403
Foulser, David E. 133 134
Fourier matrix 168
Fox, L. xxix xxx 30 31 105 184 186
FPV (floating point verification) package 495—496
Francois, Philippe 32
Frank matrix 463
Fraysse, Valerie 351 468 486
Friedland, Shmuel 342 352
Frobenius norm 107
Frommer, Andreas 482
Funderlic, R.E. 190
Fused multiply-add operation 46—47 60
Gaches, J. 120 132
Gahinet, Pascal M. 318
Gal, Shmuel 50
Gallivan, K.A. 180
Gallopoulos, E. 103 485
Gander, Walter 522
Gantmacher, F.R. 161
Gardiner, Judith D. 317 318
Gardner, Martin 115
Garner, Harvey L. 57
Gasca, M. 180 189
Gastinel, Noel 111 114
Gauss — Jordan elimination 273—277 281—282
Gauss — Jordan elimination error analysis 273—277
Gauss — Jordan elimination, algorithm 273
Gauss — Seidel method 321 329
Gauss, Carl Friedrich 1 187 215 321 381 456
Gaussian elimination 158—163; see also “LU factorization”
Gaussian elimination complete pivoting 158; see also “Complete pivoting”
Gaussian elimination computer programs, first 188
Gaussian elimination computer programs, history of 188
Gaussian elimination connection with LU factorization 161
Gaussian elimination error analysis 163—166
Gaussian elimination error analysis, history of 183—187
Gaussian elimination in ancient China 187
Gaussian elimination loop orderings 187
Gaussian elimination need for pivoting 158
Gaussian elimination on diagonally dominant matrix 170—172
Gaussian elimination on Hessenberg matrix 24—25
Gaussian elimination on tridiagonal matrix 174
Gaussian elimination pairwise elimination 180 189
Gaussian elimination partial pivoting 158 162;
Gaussian elimination pivoting strategy, choice of 178—179
Gaussian elimination rook pivoting 159; see also “Rook pivoting”
Gaussian elimination row-wise error bounds 177
Gaussian elimination scaling, row and column 177—179
Gaussian elimination threshold pivoting 193
Gaussian elimination use by Gauss 187
Gaussian elimination versus Cramer's rule 13—14
Gaussian elimination, a posteriori stability tests 180—181
Gaussian elimination, growth factor 165—173; see also “Growth factor”
Gaussian elimination, parallel variants of 179—180
Gaussian elimination, pessimism of its accuracy in 1940 183
Gaussian elimination, without pivoting, instability of 15
Gautschi, Walter 415 419
Gautschi, Werner 344
Gay, David M. 57
ge see “Gaussian elimination”
Geist, G.A. 25
Gelfand's problem 48
Geman, Stuart 516
Generalized QR factorization 397—398
Gentle, James E. 29
Gentleman, W. Morven 103 375 376 456 570
Geometric computation, accuracy of algorithms in 29
George, Alan 181 209
Реклама