Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Higham N.J. — Accuracy and Stability of Numerical Algorithms
Higham N.J. — Accuracy and Stability of Numerical Algorithms



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Accuracy and Stability of Numerical Algorithms

Автор: Higham N.J.

Аннотация:

What is the most accurate way to sum floating point numbers? What are the advantages of IEEE arithmetic? How accurate is Gaussian elimination and what were the key breakthroughs in the development of error analysis for the method? The answers to these and many related questions are included here.

This book gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis. Software practicalities are emphasized throughout, with particular reference to LAPACK and MATLAB. The best available error bounds, some of them new, are presented in a unified format with a minimum of jargon. Because of its central role in revealing problem sensitivity and providing error bounds, perturbation theory is treated in detail.

Historical perspective and insight are given, with particular reference to the fundamental work of Wilkinson and Turing, and the many quotations provide further information in an accessible format.

The book is unique in that algorithmic developments and motivations are given succinctly and implementation details minimized, so that attention can be concentrated on accuracy and stability results. Here, in one place and in a unified notation, is error analysis for most of the standard algorithms in matrix computations. Not since Wilkinson's Rounding Errors in Algebraic Processes (1963) and The Algebraic Eigenvalue Problem (1965) has any volume treated this subject in such depth. A number of topics are treated that are not usually covered in numerical analysis textbooks, including floating point summation, block LU factorization, condition number estimation, the Sylvester equation, powers of matrices, finite precision behavior of stationary iterative methods, Vandermonde systems, and fast matrix multiplication.

Although not designed specifically as a textbook, this volume is a suitable reference for an advanced course, and could be used by instructors at all levels as a supplementary text from which to draw examples, historical perspective, statements of results, and exercises (many of which have never before appeared in textbooks). The book is designed to be a comprehensive reference and its bibliography contains more than 1100 references from the research literature.

Audience

Specialists in numerical analysis as well as computational scientists and engineers concerned about the accuracy of their results will benefit from this book. Much of the book can be understood with only a basic grounding in numerical analysis and linear algebra.

About the Author

Nicholas J. Higham is a Professor of Applied Mathematics at the University of Manchester, England. He is the author of more than 40 publications and is a member of the editorial boards of the SIAM Journal on Matrix Analysis and Applications and the IMA Journal of Numerical Analysis. His book Handbook of Writing for the Mathematical Sciences was published by SIAM in 1993.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 2

Год издания: 2002

Количество страниц: 680

Добавлена в каталог: 19.06.2009

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Weidner, Peter      483
Weinberger, Hans F.      115
Weiss, N.      133
Welfert, B.D.      180
Wendroft, Burton      186 190
Werner, Wilhelm      103
Westin, Lars      302 318
Westlake, Joan R.      512
Wette, Matthew R.      317
White, Jon L.      57
White, Michael      459
Wichmann, B.A.      496 499
Wilkinson, J.H on the purpose of a priori error analysis      195
Wilkinson, J.H.      xxv xxviii—xxx 12 22 27 29 29 30 35 48 52 53 55 61 66 67 67 69 76 77 90 91 93 94 102 103 105 132 139 151 152 165 167 169 172 177 180 183—190 195 199 200 209 232 240 252 275 281 282 295 322 323 337 342 666 357 375 376 376 378 381 389 402—404 459 472 481 539 577
Wilkinson, J.H. first program for Gaussian elimination      188
Wilkinson, J.H. solving linear systems on desk calculator in 1940s      184
Wilkinson, J.H. user participation in a computation      27
Williams, Jack      415
Wilson, Greg      56
Winograd's method      434 448
Winograd's method error analysis      439—440
Winograd's method, scaling for stability      439—440
Winograd, Shmuel      434—436 448
Wisniewski, John A.      485
Witzgall, C.      107 114 116
Wobbling precision      39 47
Wolfe, Jack M.      88
Woodger, Michael      157 433
Wozniakowski, H.      85 133 240 241 298 324 328 466 468
Wrathall, Celia      485
Wright, Margaret H.      226 471 472 476
Wright, Stephen J.      167 226 468
WY representation of product of Householder matrices      363—365
Yalamov, Plamen Y.      76 456 457
Yeung, Man-Chung      189
Yip, E.L.      487
Yohe, J. Michael      483 501
Young, David M.      29 322 343
Young, Gale      114
Ypma, Tjalling Y.      468 469
Yu, Y.      282
Yuval, Gideon      446
Zawilski, Adam T.      324
Zehfuss, Johann Georg      317
Zeller, K.      76
Zeng, Z.      282
Zeuner, Hansmartin      456
Zha, Hongyuan      154 189 374 524
Zhang, Zhenyue      524
Zielke, Gerhard      114 524
Zietak, K.      318
Ziv, Abraham      50 56 76
Zlatev, Zahari      302
1 2 3 4 5 6 7
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте