Авторизация
Поиск по указателям
Higham N.J. — Accuracy and Stability of Numerical Algorithms
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Accuracy and Stability of Numerical Algorithms
Автор: Higham N.J.
Аннотация: What is the most accurate way to sum floating point numbers? What are the advantages of IEEE arithmetic? How accurate is Gaussian elimination and what were the key breakthroughs in the development of error analysis for the method? The answers to these and many related questions are included here.
This book gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis. Software practicalities are emphasized throughout, with particular reference to LAPACK and MATLAB. The best available error bounds, some of them new, are presented in a unified format with a minimum of jargon. Because of its central role in revealing problem sensitivity and providing error bounds, perturbation theory is treated in detail.
Historical perspective and insight are given, with particular reference to the fundamental work of Wilkinson and Turing, and the many quotations provide further information in an accessible format.
The book is unique in that algorithmic developments and motivations are given succinctly and implementation details minimized, so that attention can be concentrated on accuracy and stability results. Here, in one place and in a unified notation, is error analysis for most of the standard algorithms in matrix computations. Not since Wilkinson's Rounding Errors in Algebraic Processes (1963) and The Algebraic Eigenvalue Problem (1965) has any volume treated this subject in such depth. A number of topics are treated that are not usually covered in numerical analysis textbooks, including floating point summation, block LU factorization, condition number estimation, the Sylvester equation, powers of matrices, finite precision behavior of stationary iterative methods, Vandermonde systems, and fast matrix multiplication.
Although not designed specifically as a textbook, this volume is a suitable reference for an advanced course, and could be used by instructors at all levels as a supplementary text from which to draw examples, historical perspective, statements of results, and exercises (many of which have never before appeared in textbooks). The book is designed to be a comprehensive reference and its bibliography contains more than 1100 references from the research literature.
Audience
Specialists in numerical analysis as well as computational scientists and engineers concerned about the accuracy of their results will benefit from this book. Much of the book can be understood with only a basic grounding in numerical analysis and linear algebra.
About the Author
Nicholas J. Higham is a Professor of Applied Mathematics at the University of Manchester, England. He is the author of more than 40 publications and is a member of the editorial boards of the SIAM Journal on Matrix Analysis and Applications and the IMA Journal of Numerical Analysis. His book Handbook of Writing for the Mathematical Sciences was published by SIAM in 1993.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Издание: 2
Год издания: 2002
Количество страниц: 680
Добавлена в каталог: 19.06.2009
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
GEPP see “Gaussian elimination partial
Geuder, James C. 186
Ghavimi, Ali R. 315—317
Gill, Philip E. 210 226 227 229 413 476
Gill, S. 83
Givens rotation 365
Givens rotation, disjoint rotations 367—368 379
Givens rotation, fast 376
Givens, Wallace J. 29 61
Gluchowska, J. 404
GNU MP library 502
Godunov, S.K. 285
Gohberg, L. 128 129 428
Goldberg, David 35 53 85 532
Goldberg, I. Bennett 57
Goldstine, Herman H. 1 29 48 183 184 188 259 260 515
Golub, Gene H. xxviii 11 24 29 115 132 133 172 187 208 231 256 257 282 299 307 308 308 323 345 375 377 380—382 389 399 402—405 429
Goodman, R. 57
Goodnight, James H. 282
Gould, Nicholas I.M. 170 189
Govaerts, Willy J.F. 241
Gradual underflow 38 42 45 56
Gragg, W.B. 295 376
Graham, Ronald L. 79 518
Gram — Schmidt method 369—373
Gram — Schmidt method reorthogonalization 376
Gram — Schmidt method, classical 369
Gram — Schmidt method, classical, error analysis 371 373
Gram — Schmidt method, modified 370
Gram — Schmidt method, modified, connection with Householder QR factorization 353 371—372 376
Gram — Schmidt method, modified, error analysis 371—373
Gram — Schmidt method, modified, error analysis for application to LS problem 386
Gram — Schmidt method, modified, stability 24
Greenbaum, Anne 324 337
Gregory, Robert T. 29 512 522
Griewank, Andreas 469
Grimes, Roger G. 188 219 227 302 524
Grosse, Eric 573
Group inverse 331
Growth factor 165—173
Growth factor for banded matrix 173
Growth factor for block factorization 216 218 221 226
Growth factor for complete pivoting 169—170
Growth factor for diagonally dominant matrix 172
Growth factor for partial pivoting 166—173
Growth factor for partial pivoting large growth in practical problems 167
Growth factor for random matrices 189
Growth factor for rook pivoting 170
Growth factor for tridiagonal matrix 173
Growth factor for upper Hessenberg matrix 172
Growth factor maximization by direct search 472—473
Growth factor numerical maximization for complete pivoting 170 189
Growth factor, a posteriori estimates for 180—181
Growth factor, define using exact or computed quantities 165 189
Growth factor, lower bound for 167
Growth factor, statistical model of 168
Gu, Ming 346 404 406 534
Guard digit 44
Guard digit, test for 52
Gudmundsson, Thorkell 298
Guggenheimer, Heinrich W. 284
Gulliksson, Marten 405
Gustafson, John L. 446
Gustavson, F.G. 187
Haar distribution, random orthogonal matrix from 517—518
Hadamard condition number 279 282 284
Hadamard matrix 116 168 170 193
Hadamard's inequality 284
Hager, William W. 292 301
Hall, Jr., Marshall 168
Halley's method 508
Halmos, Paul R. 511
Hamada, Hozumi 49
Hammarling, Sven J. 317 322 323 376 397 500
Hamming, R.W. 53 431
Hansen, Per Christian 133 377 448
Hanson, Richard J. 375 376 399 402 403 414 499
Harter, Richard 446
Hartfiel, D.J. 132
Harwell — Boeing sparse matrix collection 524
Hauser, John R. 57 59
Hearon, John Z. 311
Heath, Michael T. 259 388
Hedayat, A.S. 168
Hein, Piet 31 115
Helvin, Marie 153
Henderson, Harold V. 317 487
Hennessy, John L. 35 53
Henrici, Peter 48 49 61 77 344
Henson, Van Emden 456
Heron's formula 45
Heroux, Michael 446 569
Herzberger, Jiirgen 483
Hessenberg matrix Gaussian elimination 24—25 30
Hessenberg matrix, determinant of 24—25 30 280
Hessenberg matrix, growth factor for 172
Hewer, Gary 318
Hewlett — Packard HP 48G calculator condition estimator 302
Hewlett — Packard HP 48G calculator exhausting its range and precision 15—16
Hidden bit 41
Higham, Desmond J. 114 128 129 136 167 187 339 342 394 429
Higham, Nicholas J. 65 90 128 129 132 151—153 167 187 190 210 219 227 228 240—242 249—253 256 257 262 269 278 281 292 294 295 298 301—304 317 324 347 349 351 362 375 377 378 380 394—396 398 400 402—405 409 413 414 429 431 446—448 486 505 523 525 564 569 571
Hilbert matrix 512—515 523—524
Hilbert matrix determinant 513
Hilbert matrix, Cholesky factor 513
Hilbert matrix, inverse 513
Hilbert, David 523
Hildebrand, F.B. 28 35
Hodel, A. Scottedward 317
Hodges, Andrew xxix
Hoelder inequality 106 107
Hoffman, A.J. 377
Hoffmann, Christoph M. 29
Hoffmann, W. 281 282 376
Hooper, Judith A. 501
Horn, Roger A. 107 115 137 152 306 342 543 547 551 554
Horner's method 94—104
Horner's method for derivatives 96—99
Horner's method for rational function 26
Horner's method running error bound 95—96 103
Horning, Jim 489
Hotelling, Harold 183 433
Hough's underflow story 506—507
Hough, David 43 506 507
Hough, Patricia D. 395
Householder transformation 354—355
Householder transformation error analysis 357—363
Householder transformation in QR factorization 355—357
Householder transformation, aggregated (WY representation) 363—365
Householder transformation, block 375
Householder transformation, choice of sign in 355
Householder transformation, history of 374—375
Householder, Alston S. 2 105 115 147 161 374 403 560
Hull, T.E. 48 50 485 503 528
Hunt, Julian 54
Huskey, H.D. 184
Hyman's method 30 280 285
Hyman, M.A. 280
IBM, ESSL library 436 438
IEEE arithmetic 39 41—43
IEEE arithmetic 42 490 492
IEEE arithmetic double rounding 43 58
IEEE arithmetic exception handling 41 491—492
IEEE arithmetic exceptions 41—42
IEEE arithmetic exploiting in software 490—493
IEEE arithmetic extended formats 42
IEEE arithmetic gradual underflow 42
IEEE arithmetic implementation using formal methods 55—56
IEEE arithmetic NaN 41—42 490 492
IEEE arithmetic parameters 371 41
IEEE arithmetic recommended auxiliary functions 492—493
IEEE arithmetic rounding modes 41
IEEE arithmetic signed zeros 42
IEEE arithmetic Standard 754 41
IEEE arithmetic Standard 854 43
IEEE arithmetic subnormal numbers 42 492
Ikebe, Yasuhiko 300 302 304
Ikramov, Khakim D. 209 525
Incertis, F. 509
Index of a matrix 331
Inertia 214
Inner product error analysis 62—65
Inner product in extended precision 64
Inner product, reducing constant in error bound 63
Intel Itanium chip 46
Intel Pentium chip, division bug 55
Internet 574
Interval analysis 41 190 481—484
Interval analysis, dependencies 482
Interval analysis, fallibility 483—484
Interval analysis, Gaussian elimination 482
Interval analysis, super-accurate inner product 483
Interval arithmetic see “Interval analysis”
INTLAB 483
Inverse iteration 24
Inverse matrix 259—285
Inverse matrix bound using diagonal dominance 154
Inverse matrix in solving Ax=b stability 260
Inverse matrix left and right residuals 261
Inverse matrix perturbation theory 127—128
Inverse matrix, Csanky's method for 278
Inverse matrix, error analysis for Gauss — Jordan elimination 273—277
Inverse matrix, error analysis for LU factorization 267—271
Inverse matrix, error analysis for triangular matrix 262—267
Inverse matrix, high-accuracy computation of 281
Inverse matrix, Newton's method for 278
Inverse matrix, Schulz iteration 278
Inverse matrix, Strassen's method for 448—449 478—479
Inverse matrix, times for computation on early computers 272
Inverse matrix, triangular, bounds for 147—149
Inverse matrix, triangular, methods for 262—267
Inverse matrix, why not to compute 260
Involutary matrix 519
Ipsen, Use C.F. 123 129 133 376 377
Iri, Masao 49 485
Irreducible matrix 127
Isaacson, Eugene 186 257
Itanium chip 46
Iterative methods see also “Stationary iterative methods”
Iterative methods dates of publication 322
Iterative methods error analysis 325—335
Iterative methods error analysis, survey of 323—324
Iterative methods stopping criteria 335—337 467—468
Iterative refinement backward error analysis 235—239 463
Iterative refinement for least squares problem 388—391 403
Iterative refinement for square linear system 27 184 231—243 462—463
Iterative refinement for Vandermonde system 427—428
Iterative refinement forward error analysis 232—235 463
Iterative refinement in fixed precision 179 234 494
Iterative refinement in mixed precision 234
Iterative refinement LAPACK convergence test 241
Iterative refinement practical issues 241—242
Iterative refinement with QR factorization 368—369
Iterative refinement, condition number estimate from 242
Jacobi method, forward error analysis 328—329
Jalby, William 376
Jankowski, M. 85 240 241
Jansen, Paul 483
Jennings, A. 152
Jennings, L.S. 413
Johnson, Charles R. 107 115 137 152 284 306 342 543 547 551 554
Johnson, Samuel 667
Jones, Mark T. 227
Jones, William B. 505
Jordan canonical form 340
Jordan, Camille 281
Jordan, T.L. 402
Jordan, Wilhelm 281
Kagstroem, Bo 302 315 316 318
Kahan matrix 149 205
Kahan matrix second smallest singular value 154
Kahan, William M. (Velvel) 1 26 29 30 32 42 43 44 45 49 55 58 59 60 69 78 83—86 88 103 111 114 124 149 152 157 226 242 404 483 486 491 494—496 498 499 504
Kahaner, David K. 381
Kailath, T. 429
Kala, R. 318
Kaniel, S. 227
Kaporin, Igor 447
Karasalo, Ilkka 152
Karatsuba, A. 447
Karlin, Samuel 520
Karlson, Rune 392 404 406
Karney, David L. 512 522
Karp, A. 187
Karpinski, Richard 52 495
Kato, Tosio 115
Kaufman, Linda 213 216 226 227 376
Kaufmann, Matt 56
Kearfott, R. Baker 483
Keiper, Jerry B. 31
Keller, Herbert Bishop 186 257 321
Kelley, C.T. 468 476
Kennedy, Jr., William J. 29
Kenney, Charles S. 298 318 523
Kerr, Thomas H. 210
Kielbasihski, Andrzej 77 85 209 241 393 404 410 414
Kincaid, D.R. 499
Kiriljuk, O.P. 285
Kittaneh, Fuad 523
Knight, Philip A. 324 347 349 351 447 448
Knuth, Donald E. xxiii xxviii 49 53 54 61 79 84 85 104 447 471 489 518 523 532
Kocak, Hiiseyin 29
Koltracht, L. 128 129
Koq, O.K. 103
Korner, T.W. 451
Kornerup, Peter 49
Kosowski, Przemyslaw 525
Kostin, V.I. 285
Kostlan, Eric 516 524
Kovarik, Z.V. 132
Kowalewski, G. 428
Krasny, Robert 502
Kreczmar, Antoni 446
Kreiss matrix theorem 346
Krogh, F.T. 499
Kronecker product 306 317
Krueckeberg, F. 191
Kubota, Koichi 485
Kucherov, Andrey B. 209
Kuczyriski, J. 298
Kuki, H. 56
Kulisch, Ulrich W. 483
Kuperman, I.B. 132
La Porte, M. 486
La Touche, Mrs. 79 80
Laderman, Julian 437 446
Laeuchli, Peter 379
Lagrange, Joseph Louis 215
Lancaster, Peter 317 468
LANCELOT 170 189
Lanczos, Cornelius 486
Langlois, Philippe 484
LAPACK 579—581
LAPACK, problems, solving 497—498
LAPACK, block factorization (of symmetric matrix) 228
LAPACK, block and partitioned LU factorization 257
LAPACK, Cholesky factorization 210—211
LAPACK, condition number estimation 292—294 303
LAPACK, forward error bound for linear systems 131
LAPACK, iterative refinement 241—242
LAPACK, least squares problem 405
Реклама