Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.2
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.2
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Sum Fejer I: 261
Sun Y. I: 237; II: 241 323
Super mart in gale II: 348
Supermodular set function I: 75
Supremum I: 277
Surface measure I: 383
Surface measure on the sphere I: 238
Svetic R.E. I: 422
Swanson L.G. I: 91
Swartz Ch.W. I: 319 353 413 414 437
Symmetriaation of Stciner I: 212
Symmetric set II: 119
Sz.-Nagy B. I: 163 412 414;
Szpilrajn E. I: 80 426; 400 440 441 451 459
Sztencel R. II: 149 451
SzuJga A. II: 456
Szymanski W. I: 416
Table of sets I: 36
Tagamlicktf Ya.A. I: 321
Tagged, interval I: 353
Tagged, partition I: 354
Tagged, partition, free I: 354
Tail -algebra II: 407
Takahashi Y. II: 410 451
Talagrand M. I: 75 235; 59 104 151 153 154 168 230 416 418 426 447 448—452 455 463
Tamano K. II: 131 156
Tarieladze V.I. II: 123 125 143 144 148 167 172 443 448 449 451 452 453
Tarski A. I: 81 422
Taylor A.E. I: 414 416 432
Taylor J.C. I: 414
Taylor S.J. I: 243 414
Teicher H. I: 413
Telyakovskii S.A. I: 415
Temple G. I: 414
Ter Horst H.J. I: 428
Terpe F. II: 455
Theodorescu R. I: 431; II: 257
Theorem, A.D. Alexandroff II: 184
Theorem, Baire I: 166
Theorem, Baire, category I: 89
Theorem, Banach — Alaoglu I: 233
Theorem, Banach — Steinhaus I: 264
Theorem, Banach — Tarskj I: 81
Theorem, Beppo Levi monotone convergence I: 130
Theorem, Besicovitch I: 361
Theorem, Birkhoff — Khinchin II: 392
Theorem, Bochner I: 220; II: 121
Theorem, Carleson I: 260
Theorem, Choquet — Bishop — de Leuw II: 146
Theorem, covering I: 361
Theorem, Denjoy — Yoing — Saks I: 370
Theorem, Dieudonne I: viii; II: 241
Theorem, differentiation I: 351
Theorem, Eberlein — Smulian I: 282
Theorem, Egoroff I: 110 426;
Theorem, Fatou I:131
Theorem, Fichtenholz I: viii 271 433;
Theorem, Fubini I: 183 185 209 336 409 429;
Theorem, Gaposhklin 289 434
Theorem, Grothendieck I: viii; II: 136 241 244 262 452
Theorem, Hahn — Banach I: 67
Theorem, individual ergodic II: 392 463
Theorem, Ionescu Tulcea II: 386 463
Theorem, Jankoff II: 34 441
Theorem, Kolmogorov II: 95 98 410
Theorem, Komlos I: 290; II: 412
Theorem, Krein — Milman I: 282
Theorem, Le Cam II: 204
Theorem, Lebesgue — Vitali I: 268
Theorem, Lebesgue, dominated convergence I: 130
Theorem, Lebesgue, on the Baire classes I: 149
Theorem, Levy II: 210
Theorem, Lusin I: 115 426;
Theorem, Lusin, generalized II: 137
Theorem, Lyapunov II: 328
Theorem, Maharam II: 280
Theorem, martingale convergence II: 349 354
Theorem, mean value, first I:150
Theorem, mean value, second I:150
Theorem, measurable choice II: 34
Theorem, Michael’s selection II: 229
Theorem, Minlos — Sasonov II: 124
Theorem, monotone class I: 33
Theorem, monotone class, functional I: 146
Theorem, Muentz I: 305
Theorem, Nikodym I: 274
Theorem, Phillips II: 452
Theorem, Plancherel I: 237
Theorem, Poincare II: 392
Theorem, Preiss II: 224
Theorem, Prohorov II: 202 454 455
Theorem, Radon — Nikodym I: 177 178 180 256 429
Theorem, Riemann — Lebesgue I: 274
Theorem, Riesz I: 112 256 262;
Theorem, Riesz — Fischer I: 259
Theorem, Sard I: 239
Theorem, Scheffe I: 134 428
Theorem, separation of Souslin sets II: 22
Theorem, Sierpinski I: 4S 421
Theorem, Skorohod II: 199
Theorem, Stone II: 326
Theorem, Strassen II: 236
Theorem, three series II: 409
Theorem, Tonelli I: 185
Theorem, Tortrat II: 452
Theorem, Tychonofh II: 6
Theorem, Ulam I: 77
Theorem, Vitali on covers I: 345
Theorem, Vitali — Lebesgue — Hahn — Saks I: 274 432
Theorem, Vitali — Scheffe I: 134
Theorem, Young I: 134 428
Thielman H. I: 414
Thomsen W. II: 434
Thomson B.S. I: 210 404 413 421 436 438
Thorisson H. II: 441
Tien N D. II: 451
Tight measure II: 69
Tikhcmirov V.M. I: 420
Tiser J. II: 451
Titchmarsh E.G. I: 308 394 401 411 430—431
Tjur T. II: 452 462
Tkadlec J. I: 244 404
Toistoff (Tolstov, Tolstcw) G.P. I: 159 388 402 407 414 437;
Tonelli L. I: 185 409 423 429
Tonelli theorem I: 185
Topology of setwise convergence I: 291
Topology, I: 281
Topology, density I: 398
Topology, generated by duality I: 281
Topology, induced II: 2
Topology, Mackey II: 123
Topology, order II: 10
Topology, Sazonov II: 124
Topology, strong II: 124
Topology, weak I: 281; II: 176
Topology, weak* I: 283
Topsoe F. I: 421 438; 217 224 227 244 440 443 447 452 453 456
Toralballa L.V. I: 414
Torchinsky A. I: 414 436
Tornier E. I: 411
Tortrat A. I: 414; II: 149 443 444 451 452 453 462
Tortrat theorem II: 452
Total variation I: 220
Total variation, of a measure I: 176
TouzilHer L. I: 414
Townsend E.J. I: 411
Trace of a -algebra I: 8
Transfmitc I: 63
Transform, Fourier I: 197
Transform, Fourier, inverse I: 200
Transform, Laplace I: 237
Transform, Radon I: 227
Transformation measure-preserving II: 267
Transition, measure II: 384
Transition, probability II: 384
Traynor T. II: 463
Treschev D.V. II: 395
Triangular mapping II: 418
Tricomi F.G. I: 414
Tuero A. II: 454
Tumakov I.M. I: 416 417 423
Tutubalin V.N. II: 451
Two arrows of P.S. Alexandroff II: 9
Two-valued measurable cardinal I: 79
Tychonoff theorem II: 6
Tzafriri L. I: 433
Uglanov A.V. II: 448
Uhl J.J. I: 423; II: 329
Uhrin B. I: 431
Ulam S. I: 77 419 422 430; 336 433 442 443 458
Ulam theorem I: 77
Ulyanov PL. I: 85 413 415
Umemura Y. II: 448
Unbounded measure I: 24
Uniform, absolute continuity of integrals I: 267
Uniform, convexity of I: 284
Uniform, countable addilivity I: 274
Uniform, integrability I: 267 285
Uniform, integrability criterion I: 272
Uniformly convex space I: 284
Uniformly distributed sequence II: 238
Uniformly equicontinuous family II: 3
Uniformly integrable set I: 267
Uniformly tight family of measures II: 202
Unit of algebra I: 4
Universally measurable, mapping II: 68
Universally measurable, set II: 68
Upper bound of partially ordered set I: 277
Urbanik K. II: 149 451
Ursell H.D. I: 435; II: 161
UsG.F. I: 413
Ustunel AS. II: 236 460
V(f,[a,b]) I: 332
Vaart A.W. van der II: 456
Vajda I. I; 154
VakhaniaN.N. I: 169; II: 125 143 144 148 167 172 443 448 451 452 453
Valadier M. I: 299; II: 39 231 249 405 441 462
Vallander S.S. II: 263
Vallee Poussin Ch.J. de la see “la Vallee Poussin Ch.J. de”
Valsala J. I: 382
Value, essential I: 166
van Brunt B. see “Brunt B. van”
van Casteren J.A. see “Casteren J.A. van”
van Dalen D. see “Dalen D. van”
van der Steen P. see “Steen P. van der”
van der Vaart A.W. see “Vaart A.W. van der”
van Dulst D. see “Dulst D. van”
van Kampen E.R. see “Kampen E.R van”
van Mill J. see “Mill J. van”
van Os C.H. see “Os C.H. van”
van Rooij A.C.M. see “Rooij A.C.M. van”
Van Vleck E.B. I: 425
Varadaiajan V.S. II: 166 197 250 443 447 452 455 458
Varadhan S.R.S. II: 453
Variation of a function I: 332
Variation of a measure I: 176
Variation of a set function I: 220
Vasershtein L.N. II: 454
Vath M. I: 414
Vector lattice II: 99
Vector sum of sets I: 40
Veress P. I: 321 426
Verley J.-L. I: 414
Vershik A.M. II: 448 450 463
Version of a function I: 110
Vestrup E.M. I: 103 229 414
Vilenkm N.Ya. II: 447
Villani C. II: 236
Vinti C. I: 414
Viola T. I: 414
Viookurov V.G. II: 89 320 444 459
Visintin A. I: 299
Vitali example I: 31
Vitali G. I: v 31 134 149 268 274 345 403 411 414 417 419 426 428 432 433 436 437
Vitali system I: 397
Vitali — Lebesgue — Hahn — Saks theorem I: 274 432
Vitali — Scheffe theorem I: 134
Vitushkin A.G. I: 437
Vladimirov D.A. I: 421; II: 280 326
Vo-Khac Kh. I: 414
Vogel W. I: 414
Volcic A. I: 414
Volterra V. I: 416 425
Volume of the ball I: 239
Volume, mixed I: 226
Vol’berg A.L. I: 375
von Neumann J. see “Neumann J. von”
von Weizsacker H. see “Weizsacker H. von”
vraisup I: 140
Vulikh B.Z. I: 104 414
Vyborny R. I: 437
w*-convergence II: 176
Wage M.L. II: 135 171
Wagner D. II: 441
Wagon S. I: 81 S3
Wagschal C. I: 414 415
Wajch E. II: 444
Walter W. I: 414
Wang Z.Y. I: 423
Warmuth E. I: 413
Warmuth W. I: 413
Wasserstein metric II: 454
Watson S. II: 455
Wazewski T. I: 418
Weak, compactness I: 285
Weak, compactness in I: 285
Weak, compactness in I: 282
Weak, convergence I: 281
Weak, convergence in I: 282
Weak, convergence of measures II: 175
Weak, convergence of measures, criterion II: 179
Weak, moment of a measure II: 112
Weak, sequential completeness II: 209
Weak, topology I: 281; II: 176
weakly convergent sequence I: 281; II: 175
Weakly fundamental sequence II: 175 209
Weber H. I: 61
Weber K. I: 413 422;
Weber M. I: 435
Weierstrass K. I: 260. 416
Weighted inequality I: 374
Weil A. I: viii; II: 442 460
Weir A.J. I: 414
Weiss G. I: 238 320 430 431 435
Weiss N.A. I: 414 415
Weizsaecker H. von II: 146 168 415 463
Well-ordered set I: 62
Wellner J.A. II: 456
Wells E.B. Jr. II: 244
Wentzell A.D. II: 98
Wester O. I: 31
Weyl H. I: 426; II: 237 257
Wheeden R.L. I: 414
Wheeler R.F. II: 131 156 212 443 447 450 455 456
Whitney decomposition I: 82
Whitney H. I: 82 373
Wichura M.J. II: 251 454
Widom H. I: 414
Wiener measure II: 98
Wiener N. I: 409 417 419 430; 442 445 447 458
Реклама