Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.2
Bogachev V.I. — Measure Theory Vol.2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.2

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Os C.H. van      I: 411
Oscillation bounded mean      I: 373
Osserrnan R.      I: 379
Ostrovskii E.I.      II: 170 448
Ottaviani G.      II: 434
Outer measure      I: 16 11
Outer measure, Caratheodory      I: 41
Outer measure, continuity from below      I: 23
Outer measure, regular      I: 44
Oxtoby J.C.      I: 81 93 235 414; 330 336 433 442 443 451 458
O’Brien G.L.      II: 455
Padmanabhan A.R.      II: 266
Pages G.      I: 413
Paley R.      I: 430; II: 445 458
Pallara D.      I: 379
Pallu de la Barriere R.      I: 414
Panchapagesan T.V.      I: 414
Panferov V.S.      I: 415
Pannikov B.V.      I: 435
Panscme R.      II: 320 451
Pap E.      I: 415 423 433
Papageorgiou N.S.      I: 413
Papangelou F.      II: 323
Paracompaet space      II: 5
Pardil J.K.      II: 160 173 219 256 404 405 444 462
Parseval equality      I: 202 259
Parseval M.A.      I: 202 259
Parthasarathy K.R.      I: vi 414;
Partially ordered set      I: 62
Partition, measurable      II: 389
Partition, tagged      I: 354
Paterson ART.      II: 460
Pauc Ch.Y.      I: 411 413 438;
Paul S.      I: 416
Pcdersen G.K.      I: 414
Peano G.      I: 2 31 416 417
Peano — Jordan measure      I: 2 31
Pecaric J.E.      I: 429
Pedrick G.      I: 413
Pelc A.      I: 81
Pelczytiski A.      I: 174; II: 201
Pellaumail J.      II: 462
Peres Y.      II: 260
Perfect measure      II: 86
Perfect set      II: 8
Perfectly normal space      II: 4
Perimeter      I: 378
Perlman M.D.      II: 440
Perron O.      I: 437
Pesin I.N.      I: 416 417 423 437
Pesin Y.B.      I: 421
Peter E.      II: 464
Peters G.      II; 460
Petersen K.      II: 391
Peterson H.L.      II: 451
Petrov V.V.      II: 4111
Pettis J.      I: 422 434
Petty C.M.      I: 215
Petunin Yu.G.      II: 440
Pfanssagi J.      I: 419; II: 241 259 370 462
Pfeffer W.F.      I: 369 414 437; 443 446 449 450
Phelps R.R.      II: 146
Phillips E.R.      I: 414 416
Phillips lemma      I: 303
Phillips R.S.      I: 303; II: 136 452
Phillips theorem      II: 452
Picone M.      I: 414
Pier J.-P.      I: 416 417 423;
Pierlo W.      I: 419
Pierpont J.      I: 410
Pilipenko A.Yu.      I: 382
Pinsker M.S.      I: 155
Pinsker — Kullback — Csiszar inequality      I: 155
Pintacuda N.      II: 51
Pisier G.      I: 431; II: 120 145
Pitman J.      I: 435
Pitt H.R.      I: 414
Plachky D.      I: 414
Plancherel M.      I: 237 430;
Plancherel theorem      I: 237
Plane, Sorgenfrey      II: 9
Plebanek G.      II: 160 166 241 335 444 449 450 452 455 463
Plessrier A.      I: 411
Plichko A.N.      II: 120
Podkorytov A.N.      I: 415
Poincare Formula      I: 84
Poincare H.      I: 84 378; 460 463
Poincare inequality      I: 378
Poincare theorem      II: 392
Point, density      I: 366
Point, Lebesgue      I: 351 366
Pol R.      II: 129 230
Polischuk E.M.      I: 416
Polish space      II: 6
Pollard D.      I: 414; II: 447 453 456
Polya G.      I: 243 429;
Polynomials, Chebyshev — Hermits      I: 260
Polynomials, Laguerre      I: 304
Polynomials, Legendre      I: 259
Ponomarev S.P.      I: 382; II: 335
Ponomarev V.I.      II: 9 64
Poroshkin A.G.      I: 414 420
Portenier C.      I: 415; II: 447 451
Positive definite function      I: 198 220
Possel R. de      I: 438
Post K.A.      II: 257
Pothoven K.      I: 414
Poulsen E.T.      I: 246
Prasad V.S.      II: 288 459
Pratelli L.      II: 51 454
Pratt J.W.      I: 428
Preimage measure      II: 267
Preiss D.      I: 404 437; 120 145 224 225 451 463
Preiss theorem      II: 224
Preston C.J.      II: 464
Priestley H.A.      I: 414
Prigarin S.M.      II: 456
Prikry K.      II: 137 444
Prinz P.      II: 452
Probability, measure      I: 10
Probability, space      I: 10
Probability, transition      II: 384
Product of measures      I: 181
Product of measures, infinite      I; 188
Product of topological spaces      II: 11
Product, $\sigma$-algebra      I: 180
Product, measure      I: 181
Prohorov (Prokhorov, Prochorow) Yu.V.      I: viii 417; 189 193 202 219 309 442 443 447 449 452 453 454 455
Prohorov space      II: 219 455
Prohorov theorem      II: 202. 454 455
Projection marginal      II: 324
Projective limit of measures      II: 96 308
Projective system of measures      II: 308
Property, (N)      I: 194 388 438;
Property, Banach — Saks      I: 285
Property, doubling      I: 375
Property, Skorohod      II: 199
Prostov Yu.I.      II: 319
Prum B.      II: 464
Ptak P.      I: 244
Ptak V.      I: 90
Pugachev O.V.      I: 102; II: 457
Pugachev V.S.      I: 414
Pugh C.C.      I: 414
Pure measure      II: 173
Purely additive set function      I: 219
Purves R.      II: 60
Quasi-dyadic space      II: 134
Quasi-invariant measure      II: 305
Quasi-Marik space      II: 131
Quasi-measure      II: 118
Rachev S.T.      II: 236 454 456
Raderaacher H.      I: 85; II: 459
Rado T.      I: 102 437;
Radon J.      I: v vi viii 178 227 409 417 418 425 429 431 434 437; 446 457
Radon measure      II: 68
Radon space      II: 135
Radon transform      I: 227
Radon — Nikodym density      I: 178
Radon — Nikodym theorem      I: 177 178 180 256 429
Radonifying operator      II: 168
Radul T.N.      II: 228 455
Ramachandran B.      I: 430
Ramachandran D.      II: 325 399 433 444 459 461 462
Ramakrishnan S.      II: 462
Rana IK.      I: 414
Randolph J.F.      I; 414
Rao B.V.      I: 211 422; 58 60 440 459
Rao K.P.S. Bhaskara      I; 99 422 423; 58 61 161 440 459
Rao M. Bhaskara      I: 99 423;
Rao M.M.      I: 242 312 320 397 414 423; 441 452 460 461 462
Rao R.R.      II: 190
Rataj J.      II: 463
Ray W.O.      I: 414
Raynaud de Fitte P.      II: 231 248.
Real measurable cardinal      I: 79
Real-valued function      I: 9
Rectangle measurable      I: 180
Reflexive Banach space      I: 281
Regular averaging operator      II: 200
Regular conditional measure      II: 357 358 462
Regular measure      II: 70
Regular outer measure      I: 44
Regular space      II: 4
Reichelderfer P.V.      I: 102; II: 460
Reinhold-Larsson K.      I: 435
Reisner S.      I: 246
Reiter H.      II: 333
Relative compactness      II: 5
Remy M.      II: 406 444 462
Render H.      II: 166
Renyi A.      I: 104; II: 248 462
Repovs D.      II: 228
Representation, Choquet      II: 146
Representation, Skorohod      II: 199
Representation, Stone      II: 326
Reshetnyak Yu.G.      I: 228 379 382; 252
Ressel P.      II: 127 156 245 261 409 451
Restriction of a $\sigma$—algebra      I: 56
Restriction of a measure      I: 23 57
Reversed martingale      II: 348 355
Revesz P.      II: 410
Revuz D.      I: 414
Rey Pastor J.      I: 414
Rice N.M.      I: 431
Richard U.      I: 414
Richter H.      I: 414
Ricker W.J.      I: 423
Rickert N.W.      I: 244
Ridder J.      I: 419
Riecan B.      I: 423
Riemann B.      I: v 138. 416
Riemann integral      I: 138
Riemann integral, improper      I: 138
Riemann — Lebesgue theorem      I: 274
Riesz F.      I: v viii 112 163 256 259 262 386 409 412 417 424 425 426 430 431 434; 445 446 457 463
Riesz M.      I: 295 434
Riesz theorem      I: 112 256 262;
Riesz — Fischer theorem      I: 259
Right invariant measure      II: 304
Riischendorf L.      II: 236 325 434 456 461
Ring generated by a semiring      I: 8
Ring generated of sets      I: 8
Rinkewitz W.      II: 311
Rinow W.      II: 421
Riss E.A.      II: 451
Riviere T.      I: 382
Rodriguez-Salinas B.      II: 451 452
Roeckner M.      II: 433 441 457
Rogers C.A.      I: 90 215 422 430; 49 56 60 61 140 440 452
Rogge L.      II: 244
Rogosinski W.W.      I: 261 414
Rohlin (Rokhlin) V.A.      I: viii 409 417; 284 441 442 443 459 459 462
Romanovski P.      I: 437
Romanovsky V.      II: 453
Romero J.L.      I: 310
Rooij A.C.M. van      I: 406 414
Rosenblatt J.      I: 422
Rosenthal A.      I: 410 415 418 419 421
Rosenthal HP.      I: 303
Rosenthal J.S.      I: 414
Rosenthal lemma      I: 303
Rosiiiski J.      II: 147
Ross K.A.      I: 435; II: 44 306 308 320 448 451 460
Rota G.C.      II: 427
Rotar V.I.      I: 414
Roussas G.G.      I: 414; II: 257
Roy KG.      I: 414
Royden H.L.      I: vi 414;
Rubel L.A.      I: 401
Rubinshtem (Rubinstein) G.Sh.      II: 191 453 456 457
Rubio B.      I: 413
Rubio de Francia J.L.      I: 375
Ruch J.-J.      I: 435
Ruckle W.H.      I: 414
Rudin W.      I: 138 314 414 435;
Rudolph D.      II: 459
Rue Th. de La      II: 459
Ruelle D.      II: 464
Rutickii Ja.B.      I: 320 400 435
RuziewicB S.      I: 390
Rybakov V.I.      II: 452
Ryll-Nardzewski C.      I: 102 421; 335 429 440 441 444 455 462 463
Saadoune M.      I: 299
Saakyan A.A.      I: 261 306
Saaonov V.V.      II: 46 90 124 159 400 444 449 451 461 462 462
Sadovnichii V.A.      I: 172 414
Sadovnichii Yu.V.      II: 311 457
Sahnier A.      I: 415
Saint-Pierre J.      II: 462
Saint-Raymond J.      II: 38 441 456
Sainte-Beuve M.F.      II: 40
Saks S.      I: 274 276 323 332 370 372 392 411 418 432 433 437; 446 458
Saksman E.      I: 376
Salem R.      I: 142 435
Samorodnitskii A,A.      II: 459
Samuehdes M.      I: 414
Samur J.D.      II: 451
Sansone G.      I: 411 414 426
Sapounakis A.      II: 230 231 463
Sarason D.      I: 174
Sard A.      I: 239
Sard inequality      I: 196
Sard theorem      I: 239
Sato H.      II: 120 450
Saturated measure      I: 97
Savage L.J.      I: 279; II: 408 464
Savare G.      II: 454 460
Saxe K.      I: 414
Saxena S.Ch.      I: 414
Sazanov topology      II: 124
Sazhenkov A.N.      II: 244
Schachermayer W.      II: 135 451 452
Schaefer H.H.      I: 381; II: 119 123 208
Schaerf H.M.      II: 450
Schafke F.W.      I: 414
Schal M.      II: 249
Schauder basis      I: 296
Schauder J.P.      I: 296 437
Schechtman G.      I: 239
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте