Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.2
Bogachev V.I. — Measure Theory Vol.2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.2

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Scheffe H.      I: 134 428
Scheffe theorem      I: 134. 428
Scheffer C.L.      I: 431
Scheme, Souslin      I: 36
Scheme, Souslin, monotone      I: 36
Scheme, Souslin, regular      I: 36
Schief A.      II: 228 260 454
Schikhof W.H.      I: 406 414
Schilling R.      I: 414
Schlesinger L.      I: 411
Schlumprecht T.      I: 215 239
Schmets J.      I: 413
Schmetterer L.      I: 412
Schmitz N.      I: 414
Schmuckenschlager M.      I: 246
Schneider R.      I: 431
Schoenflies A.      I: 410
Schuss Z.      II: 160
Schwartz J.T.      I: 240 282 283 321 413 415 421 423 424 434 435; 264 326 373 447 463
Schwartz L.      I: 376 414; 443 447 452 455 462
Schwarz G.      I; 141 428
Scorza Dragoni G.      II: 137
Second mean value theorem      I: 150
Section of a mapping      II: 34
Section of a set      I: 183
Seebach J.      II; 9 64
Segal I.E.      I: 312 327 414
Segovia C.      II: 320 451
Seidei W.      II: 450
Selection      II: 34 35
Selection, Borel      II: 38
Selection, measurable      II: 33 34 35 40 11 441 458
Selection, Michael’s      II: 228 229
Semadeni Z.      II: 452
Semenov P.V.      II: 228
Semi-algebra of sets      I: 8
Semi-ring of sets      I: 8
Semiadditivity      I: 9
Semicontinuity, lower      II: 75
Semicontinuity, upper      II: 19. 75
Semifinite measure      I: 97 312
Seminorm      I: 249
Semmes S.      I: 437
Sentilles F.D.      II: 455
Separable in the sense of Rohlin      II: 280
Separable measure      I: 54 91 306;
Separable metric space      I: 252
Separable, $\sigma$-algebra      II: 16
Sequence, convergent, in $L^{1}(\mu)$      I: 128
Sequence, convergent, in measure      I: 111
Sequence, convergent, in the mean      I: 128
Sequence, fundamental, in $L^{1}(\mu)$      I: 116 128
Sequence, fundamental, in measure      I: 111
Sequence, fundamental, in the mean      I: 116 128
Sequence, uniformly distributed      II: 238
Sequence, weakly convergent      I: 281; II L75
Sequence, weakly fundamental      II: 175 209
Sequential compactness      II: 5
Sequentially Prohorov space      II: 219
Serov V.S.      I: 415
Set function, additive      I: 302
Set function, countably additive      I: 9
Set function, countably-subadditive      I: 11
Set function, monotone      I: 17 41 70 71 75
Set function, subadditive      I: 9
Set of continuity of a measure      II: 186
Set of full measure      I: 110
Set of measures, countably determined      II: 230
Set of measures, countably separated      II 230
Set, $\mathcal{E}$-analytic      I: 36; II: 46
Set, $\mathcal{E}$-Souslin      I: 36; II: 46
Set, $\mathcal{F}$-analytic      II: 49
Set, $\mathcal{F}$-Souslin      II: 49
Set, $\mathcal{K}$-analytic      II: 49
Set, $\mu$-measurable      I: 17 21
Set, analytic      I: 36; II: 20 46
Set, Baire      II: 12
Set, Bernstein      I: 63
Set, Besicovitch      I: 66
Set, Borel      I: 6; II: 10
Set, bounded perimeter      I: 378
Set, Caccioppolli      I: 378
Set, Cantor      I: 30
Set, closed      I: 2
Set, co-Souslin      II: 20
Set, coanalytic      II: 20
Set, cylindrical      I: 188; II: 117
Set, direcled      II: 3
Set, Erdoes      I: 422
Set, functionally closed      II: 4 12
Set, functionally open      II: 12
Set, Lebesgue      I: 352
Set, Lebesgue measurable      I: 3 17
Set, locally measurable      I: 97
Set, measurable      I: 21
Set, measurable, Caratheodory      I: 41
Set, measurable, Jordan      I: 2
Set, measurable, with respect to u:      I: 17
Set, Nikodym      I: 67
Set, nonmeasurable      I: 31
Set, open      I: 2
Set, ordered      I: 62
Set, partially ordered      I: 62 277
Set, perfect      II: 8
Set, Sierpinski      I: 91
Set, Souslin      I: 36 39 420; 46
Set, symmetric      II: 119
Set, universally measurable      II: 68
Set, universally Radon measurable      II: 68
Set, well-ordered      I: 62
Set-theoretic operation      I: 1
Set-theoretic problem      I: 77
Sets, independent      II: 400
Sets, metrically separated      I: 194
Severini C.      I: 426
Shabunin M.I.      I: 415
Shah S.M.      I: 414
Shakarchi R.      I: 414
Shavgulidae E.T.      II: 449
Sheftel Z.G.      I: 413
Shelah S.      II: 376
Sherman S.      II: 400
Shilov G.E.      I: 397 414 437 438; 446
Shiryaev A.N.      I; vi 411; 410 453 461
Shneider (Sneider) V.E.      II: 440
Shortt P.M.      II: 50 60 61 159 456
Sicbert E.      II: 451
Sicrpiriski W.      I: 48 78 82 91 232 395 409 417 419 422 428; 57 60 160 237 439 440 442 444 451
Sidak Z.      II: 428
Sierpiiiski set      I: 91
Sierpiiiski theorem      I: 48 421
Signed measure      I: 175
SikoTBki R.      I: 414 421; 326 450 451
Simon A.B.      II: 333
Simon L.      I: 437
Simonelli I.      I: 103
Simonnet M.      I: 414
Simonovits M.      I: 173
Simple function      I: 106
Sinai Ya.G.      II: 391 464
Singular measure      I: 178
Singularity of measures      I: 178
Sinitsyn I.N.      I: 414
Sion M.      I: 414 423 430; 139 440 444 460 463
Skala H.J.      II: 324 461
Skorohod (Skorokhod) A.V.      I: viii 413; 98 199 448 452 453
Skorohod property      II: 199
Skorohod represent at ion      II: 199
Skorohod theorem      II: 199
Slowikowski W.      II: 448
Slutsky E.      I: 171 426;
Smiley M.F.      I: 422
Smirnov V.I.      I: 412 426 435
Smital J.      I: 403
Smith H.J.S.      I: 419
Smith H.L.      I: 435
Smolenski W.      II: 451
Smolyanov O.G.      II: 125 167 410 448 449 451 456
Smuhan V.L.      I: 282 434
Sobolev derivative      I: 377
Sobolev inequality      I: 377 378
Sobolev S.L.      I: 325 376
Sobolev space      I: 377
Sobolev V.I.      I: 414
Sodnomov B.S.      I: 87; II: 60
Sohrab H.H.      I: 414
Sokal A.D.      II: 462
Solntsev S.A.      II: 448
Solovay R.      I: 80
Sondermann D.      II: 452
Sorgenfrey interval      II: 9
Sorgenfrey line      II: O
Sorgenfrey plane      II: 9
Sorgenfrey R.H.      II: 9
Soucek J.      I: 379; II: 231 252
Soury P.      II: 456
Souslin M.      I: vii viii 35 417 420; 439
Souslin operation      I: 36
Souslin scheme      I: 36
Souslin scheme, monotone      I: 36
Souslin scheme, regular      I: 36
Souslin set      I: 39 420; 46
Souslin space      II: 20
Space of measures      I: 273
Space, $BMO(\mathbb{R}^{n})$      I: 373
Space, $k_{R}$      II: 56
Space, $L^{p}$      I: 306
Space, $\mathcal{D}'(\mathbb{R}^{d})$      II: 55
Space, $\mathcal{D}(\mathbb{R}^{d})$      II: 55
Space, $\sigma$-compact      II: 5
Space, almost Lindeloef      II: 131
Space, Banach      I: 249
Space, Banach, reflexive      I: 281
Space, barrelled      II: 123
Space, Borel measure-complete      II: 135
Space, Cech complete      II: 5
Space, compact      II: G
Space, complete mod0 with respect to a basis      II: 282
Space, complete with respect to a basis      II: 280
Space, completely regular      II: 4
Space, countably compact      II: 5
Space, countably paracompact      II:
Space, double arrow      II: 9
Space, dual      I: 256 262 281 283 311 313
Space, dyadic      II: 134
Space, Euclidean      I: 254
Space, Frechet      II: 2
Space, Hauadurfi      II: 4
Space, hemicompact      II: 220
Space, Hilbert      I: 255
Space, Lebesgue — Rohlin      II: 282
Space, Lindeloef      II: 5
Space, locally compact      II: 5 114
Space, Lorentz      I: 320
Space, Lusin      II: 12
Space, Marik      II: 131
Space, measurable      I: 4
Space, measure-compact      II: 131
Space, metric, complete      I: 243
Space, metric, separable      I: 252
Space, metrizable      II: 2
Space, Milyutin      II: 201
Space, normal      II: 4
Space, normed      I: 249
Space, normed, complete      I: 249
Space, normed, uniformly convex      I: 2N4
Space, Orlicz      I: 320
Space, paracompact      II: 5
Space, perfectly normal      II: 4
Space, Polish      II: 6
Space, probability      I: 10
Space, Prohorov      II: 219 455
Space, quasi-dyadic      II: 134
Space, quasi-Marik      II: 131
Space, Radon      II: 135
Space, regular      II: 4
Space, separable in the sense of Rohlin      II: 280
Space, sequentially Prohorov      II: 219
Space, Sobolev      I: 377
Space, Souslin      II: 20
Space, standard measurable      II: 12
Space, two arrows      II: 9
Spiegel M.R.      I: 414
Sprecher D.A.      I; 414
Srinivasan T.P.      I: 94 414 419 420
Srivastava S.M.      II: 440
Staircase of Cantor      I: 193
Standard, Gaussian measure      I: 198
Standard, measurable space      II: 120
Starnpacchia G.      I: 160
Steen L.      II: 9 64
Steen P. van der      I: 414; II: 446
Stegall Gh.      II: 167
Stein EM.      I: 65 238 320 353 367 374 375 379 386 398 414 430 431 436
Stein J.D.      II: 244
Steinbaus H.      I: 85 100 102 264 430 431; 457 464
Steiner J.      I: 212
Steiner’s symmetrization      I: 212
Stepanoff W.      I: 438
Stepin A.M.      II: 459
Stieltjes      I: 33 152
Stiertjcs T.J.      I: 33 152 416 425
Stochastically independent mappings      II: 399
Stolz O.      I: 417
Stone A.H.      II: 60
Stone condition      II: 105
Stone M.H.      I: viii 411 423; 77 104 326 376 442 445 461
Stone representation      II: 326
Stone theorem      II: 326
Stone — Cech compact ideation      II: 5
Stopping time      II: 353
Strassen theorem      II: 236
Strassen V.      II: 236 324 461
Strauss W.      II: 463
Strict inductive limit      II: 207
Strieker C.      II: 63
Stromberg K.      I: 81 325 402 414 435;
Strong lifting      II: 406
Strong moment of a measure      II: 142
Strong topology      II: 124
Stroock D.W.      I: 414; II: 433 453
Structure      I: 277
Structure, $\sigma$-complete      I: 277
Structure, complete      I: 277
Sturm K.-T.      II: 454
Stute W.      I: 413; II: 453
Subadditivity      I: 9
Subadditivity, countable      I: 11
Sublinear function      I: 67
Submartingale      II: 348
Submeasure      I: 75
Submeasure, Maharam      I: 75
Submodular set function      I: 75
Subramanian B.      I: 31(1
Sucheston L.      I: 435 438; 463
Sudakov V.N.      I: 318 434; 448 461
Suetin P.K.      I: 261
Sullivan D.      I: 422
Sullivan J.A.      I: 413
Sultan A.      II: 131 451
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте