Авторизация
Поиск по указателям
Bogachev V.I. — Measure Theory Vol.2
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Measure Theory Vol.2
Автор: Bogachev V.I.
Аннотация: Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.
This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.
Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.
The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.
The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 2007
Количество страниц: 500
Добавлена в каталог: 22.05.2008
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Maitra A. II; 62 60 440 459 462
Makarov B.M. I: 413 415
Malbry D. I: 52; II: 443 460
Malik SC. I: 414
Malliavin P. I: 414; II: 305
Maly J. I: 414
Malyugiri S.A. I: 423
Mansfield R. II: 440
Mapping, -measurable II: 72
Mapping, Borel I: 106 145;
Mapping, canonical triangular II: 420
Mapping, measurable I: 106
Mapping, multivalued II: 35
Mapping, open II: 3
Mapping, triangular II: 418
Mapping, universally measurable II: 68
Mapping, upper semicontinuous II: 49
Mappings, independent II: 399
Mappings, stochastically independent II; 399
Marcinkiewicz J. I: 435 437
Marczewski E. I: 100 102 165 409 419 421; 161 254 335 400 440 441 442 443 445 450 451 464
Marginal projection II: 324
Margulis G.A. I: 81 422
Maria J.L. de II: 451 452
Marie C.-M. I: 414
Marik spare II: 131
Markov A.A. II: 319 446
Martin D.A. I: 78 80
Martingale II: 348
Martingale, closable II: 354
Martingale, reversed II: 348 355
Martin’s axiom I: 78
Matran-Bea C. II: 454
Matsak I.K. II: 120
Mattila P. I: 436 437;
Mauldin R.D. I: 61 172 210 211; 61 440 441 450 462 463
Maurin K. I: 414
Mawhin J. I: 414 437
Maximal function I: 349
Mayer-Wolf E. II: 301 302
Mayrhofer K. I: 414
Mazurkiewicz S. I: 391; II: 61
Maz’ja V.G. I: 379
McCann R.J. I: 382; II: 236
McDonald J.N. I: 414 415
McLeod R.M. I: 437
McShane E.J. I: 353 411 414 437
McShane integrability I: 354
McShane integral I: 354
Mean II: 143
Measurability of graph II: 15
Measurability with respect to a -algebra I: 106
Measurability with respect to a measure I: 108
Measurability, Borel I: 106
Measurability, Caratheodory I: 41
Measurability, criterion I: 22
Measurability, Jordan I: 2
Measurability, Lebesgue I: 3
Measurable cardinal I: 79; II: 77
Measurable choice II: 34
Measurable envelope I: 44 56
Measurable function I: 105
Measurable function with respect to -algebra I: 105
Measurable kernel I: 57
Measurable mapping I: 106; II: 72
Measurable partition II: 389
Measurable rectangle I: 180
Measurable selection II: 33 34 35 40 41 441 458
Measurable set I: 21 41
Measurable space I: 4
Measure I: 9
Measure space I: 10
Measure spaces, almost homeomorpbic II: 286
Measure spaces, homeomorphic II: 286
Measure, -compact II: 91
Measure, -additive I: 10
Measure, -finite I: 24 125
Measure, -additive II: 73
Measure, -additive II: 73
Measure, absolutely continuous I: 178
Measure, abstract inner I: 70
Measure, additive extension I: 81
Measure, atomic I: 55
Measure, atomless I: 55; II: 133 317
Measure, Baire II: 68
Measure, Borel I: 10; II: 68
Measure, complete I: 22
Measure, completion regular II: 134
Measure, conditional II: 345 357 380
Measure, conditional, in the sense of Doob II: 381
Measure, conditional, regular II: 357 358 462
Measure, continuous II: 133
Measure, convex I: 226 378;
Measure, countably additive I: 9
Measure, countably additive, infinite I: 24
Measure, decomposable I: 96 235.
Measure, Dieudonne II: 69
Measure, diffused II: 133
Measure, Dirac I: 11
Measure, G-invariant II: 304
Measure, Gaussian I: 198
Measure, Haar II: 304 460
Measure, Hausdorff I: 216
Measure, infinite I: 24 97 129 235
Measure, infinite, countably additive I: 24
Measure, inner I: 57 70
Measure, inner, abstract I: 70
Measure, invariant II: 267 318
Measure, Jordan I: 2 31
Measure, Lebesgue I: 14 21 24 25 26
Measure, Lebesgue — Stieltjes I: 33
Measure, left invariant II: 304
Measure, localizable I: 97 312
Measure, locally determined I: 98
Measure, logarithmically concave I: 226; II: 149
Measure, Maharam I: 97 312
Measure, monogenic II: 134
Measure, outer I: 16 41
Measure, outer, Caratheodory I: 41
Measure, outer, regular I: 44
Measure, Peano — Jordan I: 2 31
Measure, perfect II: 86
Measure, probability I: 10
Measure, pure II: 173
Measure, quasi-invariant II: 305
Measure, Radon II: 68
Measure, regular II: 70
Measure, regular conditional II: 37)7
Measure, restriction I: 23
Measure, right invariant II: 304
Measure, saturated I: 97
Measure, semifinite I: 97 312
Measure, separable I: 53. 91 306;
Measure, signed I: 175
Measure, singular I: 178
Measure, standard Gaussian I: 198
Measure, surface I: 383
Measure, surface, standard on the sphere I: 238
Measure, tight II: 69
Measure, transition II: 384
Measure, unbounded I: 24 129
Measure, Wiener II: 98
Measure, with the doubling property I: 375
Measure, with values in I: 24 129
Measure, Young II: 231
Measure-compact space II: 131
Measures, equivalent I: 178
Measures, mutually singular I: 178
Medeiros L.A. I: 414
Medvedev F.A. I: 416 417 419 423 425 427 437
Medvedev K.V. II: 418 426 464
Mejlbro L. I; 260 438;
Mello E.A. de I: 414
Melnikcv M.S. I: 214
Memin J. II: 249
Menchoff D. I: 390 392 401 416
Mercourakib S. II: 241
Mergelyan S.N. I: 91
Merli L. I: 414
Method of construction of measures I: 43
Metivier M. I: 414; II: 451 460 462
Metric Boolean algebra I: 53
Metric, convergence in measure I: 306
Metric, Frechet — Nikodym I: 53 418
Metric, Hellingervs I: 301
Metric, Kantorovich — Rubinshtein II: 191 232 234 453 454 456 457
Metric, Ky Fan I: 426; II: 236
Metric, Levy — Prohorov II: 193 232
Metric, Wasserstein II: 454
Metrically separated nets I: 104
Metrisable space II: 2
Meyer M. I: 246
Meyer P.-A. I: 415; II: 50 142 146 356 441 454
Miamee A.G. I: 310
Michael E. II: 229
Michaels’ selection theorem II: 228 229
Michel A. I: 416 417 423
Michel H. I: 414
Migorski S. I: 413
Miintz Ch.H. I: 305
Mikusiriski J. I: 162 319 414 424
Mill J. van II: 449 452
Miller H.I. I: 403
Milman D.P. I: 282
Milyutin A.A. II: 201
Milyutin lemma II: 201
Milyutin space II: 201
Minkowski G. I: 142 225;
Minkowski inequality I: 142 226 231
Minlos R.A. II: 124
Minlos — Sazonov theorem II: 124
Misiewicz J.K. I: 431
Mitorna I. II: 53
Mitrinovic D.S. I: 429
Mixed volume I: 226
Miyara M. I: 308
MLklialev A.V. II: 447
Modica G. I: 379; II: 231 252
Modification of a function I: 110
Modular set function I: 75
Mohapl J. II: 455 456
Moment of a measure, strong II: 142
Moment of a measure, weak II: 142
Monfort A. I: 414
Monk J. II: 130
Monna A.F. I: 417 423
Monocompact class I: 52
Monogenic measure II: 134
Monotone class I: 33 48
Monotone convergence I: 130
Monotone function, differentiability I: 336
Monotone function, Lebesgue decomposition I: 344
Monotone set function I: 17 41 70; 75
Montel P. I: 410
Moore E.H. I: 435
Moran W. II: 129 131 134 226 449
Morgan F. I: 437
Morse A.P. I: 344 436 438; 444 452
Moser J. I: 382
Mosiman S.E. II: 447 455 456
Mostowski A. I: 78 79;
Mouchtari (Mushtari) D. II: 120 125 449
Mourier E. II: 447 453
Moy S.C. II: 427
Mozzochi C.J. I: 260 435
Muentz theorem I: 305
Mukherjea A. I: 414; II: 451
Muldowney P. I: 437
Multivalued mapping II: 35
Munroe M.E. I: 412 421
Murat F. I: 316
Mushtari (Mouchtari) D.Kh. II: 120 125 449
Musial K. II: 89 444 462 463
Mutually singular measures I: 178
Mycielski J. I: 240; II: 460
Myers D.L. I: 414
Nachbin L. II: 460
Naimark M.A. II: 460
Nakanishi S. II: 456
Nakayama T. II: 456
Natanson IP. I: vi 62 149 400 406 411 412 437;
Natterer F. I: 227
Negrepontis S. II: 44 450
Nelson E. II: 448
Nemytskii V.V. I: 437
Net II: 3
Net, convergent II: 3
Neubrunn T. I: 423
Neumann J. von I: vii viii be 82 409 411 417 429; 320 376 441 443 444 457 458 460 462
Neveu J. I: vi 414; 432 461 463
Newton — Leibniz formula I: 342
Niederrerter H. II: 237 238
Nielsen O.A. I: 320 414;
Nikliborc L. I: 319
Nikodym example I: 210
Nikodym O. (Nikodjm O.M.) I: v vi 53 67 89 178 229 274 306 417 419 421 429 431 432 433
Nikodym set I: 67
Nikodym theorem I: 274
NikolskiT S.M. I: 379
Nirenberg L. I: 373
Nonincreasing rearrangement I: 242
Nonmeasurable cardinal I: 79
Nonmeasurable set I: 31
Norm I: 249
Norm, Kantorovich — Kubinshtein II: 191 234 457
Norm, linear function I: 262
Normal space II: 4
Normed space I: 249
Normed space, uniformly convex I: 284
Novikoff A. II: 464
Novikov (Novikoff) P.S. II: 33 38 331 439 441 444
Novoa J.F. II: 452
Nowak M.T. I: 415
Number, ordinal I: 63
Nussbaum A.E. II: 163
Ochakovskaya O.A. II: 338
Ochan Yu.S. I: 415 437
Oden J.T. I: 414
Ohta H. II: 131 156
Okada S. II: 156 443 449 450
Okazaki Y. II: 120 156 410 443 449
Okikiclu G.O. I: 414 430 436
Olevekii A.M. I: 261
Olmsted J.M.H. I: 414
Olson M.P. II: 461
Open mapping II: 3
Open set I: 2
Operation, set-theoretic I: 1
Operation, Souslin I: 36
Operator, averaging regular II: 300
Operator, radonifying II: 168
Oppel U. II: 455
Order topology II: 10
Ordered set I: 62
Ordinal I: 63
Ordinal number I: 63
Orkln M. II: 50
Orlicz space I: 320
Orlicz W. I: 307 320
Orthonormal basis I: 258
Реклама