Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.2
Bogachev V.I. — Measure Theory Vol.2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.2

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Crittenden R.B.      I: 91
Crum MM.      I: 430
Cruzeiro A.-B.      II: 460
Csaszar A.      II: 462
Csiszar I.      I: 155; II; 451
Csornyei M.      I: 234
Cuculescu I.      I: 431
Cuesta-Albertos J.A.      II: 454
Cylinder      I: 188
Cylindrical quasi-measure      II: 118
Cylindrical set      I: 188; II: 117
Da Prato G.      II: 447
Dalecky (Dafetskii) Yu.L.      II: 125 448 453 456
Dalen D. van      I: 417 423
Dall’Aglio G.      II: 263 461
Danes S.      I: 431
Daniell integral      II: 99 101 445
Daniell P.J.      I: viii 417 419 423 429; 445
Darboux G.      I: 416
Darji U.B.      I: 103. 164
Darst R.B.      I: 243; II: 444 451
David G.      I: 437
Davies R.O.      I: 156 234 235 405; 160 171 224 451
de Acosta A.      see “Acosta A. de”
de Barra G.      see “Barra G. de”
de Bruijn N.G.      see “Bmijn N.G. de”
De Finetti B.      II: 409
De Giorgi E.      II: 456
de Guzman M.      see “Guzman M. de”
de La Rue Th.      see “Rue Th. de La”
de la Vallee Poussin Ch.J.      see “la Vallee Poussin Ch.J. de”
de Leeuw K.      II: 146 444
de Maria J.L.      see “Maria J.L. de”
de Mello E.A.      see “Mello E.A. de”
de Possel R.      see “Possel R. de”
De Wilde M.      I: 413
Decomposable measure      I; 96 235 313
Decomposition of set functions      I: 218
Decomposition, Hahn      I: 176
Decomposition, Jordan      I: 176 220
Decomposition, Jordan — Hahn      I: 176
Decomposition, Lebesgue      I: 180
Decomposition, Lebesgue, of a monotone function      I: 344
Decomposition, Whitney      I: 82
Degree of a mapping      I: 240
Deheuvels P.      I: 413
Dekiert M.      II: 444
Dellacherie C.      II: 73 142 261 356 440 441
Delode C.      I: 415
Dembski W.A.      II: 255
Demidov S.S.      I: 416
Demkowics L.F.      I: 414
Denjoy A.      I: 370 404 409 417 437 438
Denjoy — Young — Saks theorem      I: 370
DenkowHki Z.      I: 413
Denneberg D.      I: 423
Density of a measure      I: 178
Density of a set      I: 366
Density topology      I: 370 398
Density, point      I: 366
Density, Radon — Nikodym      I: 178
DePree J.      I: 413 437
Derivate      I: 331
Derivative      I: 329
Derivative approximate      I: 373
Derivative generalized      I: 377
Derivative left      I: 331
Derivative lower      I: 332
Derivative of a measure with respect to a measure      I: 367
Derivative right      I: 331
Derivative Sobolev      I: 377
Derivative upper      I: 332
Descombes R.      I: 413
Determinacy axiom      I: SO
Dharraadhikari S.      I: 431
Diaconis P.      II: 237 409
Diameter of a set      I: 212
DiBenedetto E.      I: 413
Diendonne J.      I: viii 413; 241 430 454 462 462
Diestel J.      I: 282 285 319 423 433; 329
Dieudonne example      II: 69
Dieudonne measure      II: 69
Dieudonne theorem      I: viii; II: 241
Differentiability, approximate      I: 373
Differentiable function      I: 329
Differentiation of measures      I: 367
Diffused measure      II: 133
Dinculeanu N.      I: 423; II: 445 447 463
Dini condition      I: 200
Dini U.      I: 200 416
DiPerna R.J.      II: 460
Dirac measure      I: 11
Dirac P.      I: 11
Directed set      II: 3
Disintegration      II: 380
dist(a,B)      I: 47
Distance to a set      I: 47
Distribution function of a measure      I: 32
Ditor S.      II: 228
Dixmier J.      I: 413; II: 451
Dobrushin R.L.      II: 454 464
DoJeans-Dade G.      II: 63
DoJzrmko E.P.      I: 403
Dominated convergence      I: 130
Doob conditional measure      II: 381
Doob inequality      II: 353
Doob J.L.      I; ix 412 413; 99 346 353 356 381 433 442 448 461
Dorogovtsev A.Ya.      I: 413 415
Double arrow space      II: ?3
Doubling property      I: 375
Douglas R.G.      I: 325
Drewnowski L.      I: 319 423 433
Drmfeld V.G.      I: 422
Dshalalow J.H.      I: 413
Dual space      I: 256 262 28.1 283 311 313
Dual to $L^{1}$      I: 266 313 431
Dual to $L^{p}$      I: 266 311 431
DubiDs L.E.      I: 435; II: 199 370 428 454 462
Dubrovskn V.M.      I: 324 433
Ducel Y.      I: 415
Dudley R.M.      I: 62 228 413 415; 166 236 410 449 451 453 456 461
Dugac P.      I: 416 432
Dugundji J.      II: 54
Dulst D. van      II: 444
Dunford N.      I: 240 282 283 321 413 415—421 423 424 431 434 435; 264 326 373 447 463
Durrett R.      I: 413; II: 432 461
Dyadic space      II: 134
Dynkin E.B.      I: 420; II: 441
Dzamonja M.      II: 449 452
Dzhvarsheishvili A.G.      I: 437
D’Aristotilc A.      II: 237
D’yachenko M.I.      I: 413 415
E*      I 262 281 283
E**      I: 281
Earner M.      I: 413
Eaton M.L.      I: 431
Eberlein W.F.      I: 282 434
Eberlein — Smulian theorem      I: 282
Edgar G.A.      I: 413 435 437 438; 52 151 321 322 405 461 463
Edwards H.E.      I: 261. 423; II: 119 146 319 451
Eggleston H.G.      I: 235
Egoroff D.-Th.      I: v 110 417 426 437
Egoroff theorem      I: 110 426;
Eifler L.Q.      II: 228
Eiselc K.-Th.      II: 311
Eisen M.      I: 413
Elliott E.O.      II: 444 452
Ellis H.W.      II: 460
Elstrodt J.      I: 413 415;
Eluding load      II: 189
Ene V.      I; 436
Engelking P.      II: 1 6 7 8 9 13 45 54 58 62 75 77 83 111 114 166 173 201 244 289
Envelope, closed convex      I: 282
Envelope, measurable      I: 44 56
Equality of Parseval      I: 259
Equicontinuous family      II: 3
Equimeasurable functions      I: 243
Equivalence of functions      I: 139
Equivalence of measures      I: 178
Equivalent functions      I: 120 139
Equivalent measures      I: 178
Erahav (Jerechow) M.P.      II: 311 458 459 463
Erdoes set      I: 422
Erdos P.      I: 90 235 243;
Ergodic theorem      II: 392 463
Erobin V.D.      II: 173 443
Escher J.      I: 413
Essential value of a function      I: 166
Essentially bounded function      I: 140
essinf      I: 167
esssup      I: 167 250
Ethier S.N.      II: 453
Euclidean space      I: 254
Evans C.      I: 379 437
Evans M.J.      I: 103 164
Evstigneev I.V.      II: 41
Example, Besicovitch      I: 66
Example, Dieudonne      II: 69
Example, Fichtenholz      I: 233
Example, Kolmogorov      I: 261
Example, Losert      II: 406
Example, Nikodym      I: 210
Example, Vitali      I: 31
Expectation, conditional      II: 348 469
Extension of a measure      I: 18 22 58;
Extension of a measure, Lebesgue      I: 22
Extension of Lebesgue measure      I: 81
Extremally disconnected compact      II: 244
Faber V.      I: 240
Faden A.M.      I: 423; II: 462
Fairell R.H.      I: 308
Falconer K.J.      I: 67 210 234 243 421 437
Family equicontinuous      II: 4
Family uniformly equicontinuous      II: 4
Fatou lemma      I: 131
Fatou P.      I: 130 131 428
Fatou theorem      I: 131
Federer H.      I: 79 243 312 373 381 413 430 437; 460
Fedorchuk V.V.      II: 201 245 311 455 457
Feffermarin C.      I: 375
Fejer L.      I: 261
Fejer sum      I: 261
Fejzic H.      I: 87
Feldman J.      II: 44?
Feller W.      I: 437
Fernandez P.J.      I: 413
Fernique X.      II: 199 224 410 451 454 456 462
Feyel D.      II: 236
Fichera G.      I: 413
Fichtenholz G.      I: viii 134 234 276 344 391 392 396 411 428 432 433 435; 241 265 464
Filippov V.V.      II: 201 229 245
Filter W.      I: 413 422;
Finitely additive, set function      I: 9 393
Fink A.M.      I: 429
Firhtenholz example      I: 233
Firhtenholz theorem      I: viii. 271 433;
First mean value theorem      I; 151)
Fischer E.      I: 259 404 431
Flachsmeyer J.      II: 451 455
Fleming W.      I: 414
Flohr F.      I: 413
Floret K.      I: 413
Fnimkin P.B.      I: 160
Folland G.B.      I: 413
Fomin S.V.      I: vi 62 65 67 412 424; 391 448 449 453 456
Fominykh M.Yu.      I: 435
Fonda A.      I: 413
Fonf V.P.      II: 120 145
Foran J.      I: 413
Formula, area      I: 380
Formula, change of variables      I: 343
Formula, coarea      I: 330
Formula, integration by parts      I: 343
Formula, inversion      I: 200
Formula, Newton — Leibniz      I: 342
Formula, Poincare      I: 84
Forster O.      I: 414
Fort J.-C.      II: 464
Fortet R.      II: 447 453
Fourier coefficient      I: 253
Fourier J.      I: 197; II: 210
Fourier transform      I: 107
Fox G.      II: 451
Franken P.      I: 413
Frankiewicz R.      II: 455
Frechet M.      I: v 53 409 410 417 418 421 425 426 429 431 434; 171 426 447
Frechet Nikodym metric      I: 53 418
Frechet space      II: 2
Free tagged interval      I: 353
Free tagged partition      I: 354
Freedman D.      II: 237 409
Freilich G.      I: 84
Freiling C.      I: 87
Fremlin alternative      II: 153
Fremlin D.H.      I: 53 74 78 80 98 100 235 237 312 325 413 421 434; 104 127 129 131 134 135 136 137 151 153 155 157 162 166 171 224 255 280 308 309 320 322 337 443 444 447 451 452 456 458 459 461 463 464
Friedman H.      I: 209
Fristedt B.      I: 413
Frolik Z.      II: 173 228 440 444
Fubini G.      I: vi 183 185 336 409 429
Fubini theorem      I: 183 185 209 336 409 429;
Fukuda R.      I: 169
Function of bounded variation      I: 332 378
Function set, additive      I: 9 218
Function set, finitely additive      I: 9
Function set, modular      I: 75
Function set, monotone      I: 75
Function set, purely additive      I: 219
Function set, submodular      I: 75
Function set, supernmdular      I: 75
Function with values in $[0,+\propto]$      I: 107
Function, $\mu$-measurable      I: 108
Function, absolutely continuous      I: 387
Function, Borel      I: 106; II: 10
Function, Cantor      I: 193
Function, characteristic, of a measure      I: 197
Function, characteristic, of a set      I: 105
Function, complex-valued      I: 127
Function, convex      I: 153
Function, diffirentiable      I: 329
Function, essentially bounded      I: 140
Function, indicator of a set      I: 105
Function, maximal      I: 349 373
Function, measurable      I: 105
Function, measurable, with respect to ?      I: 108
Function, measurable, with respect to ?-algebra,      I: 105
Function, positive definite      I: 198 220
Function, real-valued      I: 9
Function, semicontinuous, lower      II: 75
Function, semicontinuous, upper      II: 75
Function, simple      I: 106
Function, sublinear      I: 67
Functional monotone class theorem      I: 146
Functionally closed set      II: 4 12
Functionally open set      II: 12
Functions, equimeasurable      I: 243
Functions, equivalent      I: 120 139
Functions, Haar      I: 296 306
Fundamental in $L^{1}(\mu)$      I: 128
Fundamental in measure      I: 111
Fundamental in the mean      I: 128
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте