Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.2
Bogachev V.I. — Measure Theory Vol.2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.2

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Beabi R.      I: 414
Beaov O.V.      I: 379
Bear H.S.      I: 413
Beasel W.      I: 259
Beck A.      333
Becker H.      II: 451
Behrends E.      I: 413
Belkner H.      I: 413
Bellach J.      I: 413
Bellow A.      I: 435; II: 433
Benedetto J.J.      I: 160 413 415 436
Benoist J.      I: 415
Beppo Levi Theorem      I: 130
Berberian S.K.      I: 413
Berezanskil L.A.      II: 451
Berezansky Yu.M.      I: 413
Berg C.      II: 451
Bergh J.      I: 435
Bergin J.      II: 266
Bergstrom H.      II: 453
Berkes I.      II: 415 464
Berliocchi H.      II: 137
Bernstein F.      I: 63
Bernstein set      I: 63
Bertin E.M.J.      I: 431
Besicovitch A.S.      I: 65 314 361 421 435 436
Besicovitch example      I: 66
Besicovitch set      I: 66
Besicovitch theorem      I: 361
Bessel inequality      I: 259
Bichteler K.      I: 413 423;
Bienayme J.      I; 428
Bierlein D.      I: 59 421
Billlngsley P.      I: 413; II: 53 391 431 453 456
Bingham N.H.      I: 412 416
Birkhoff CD.      I: viii; II: 392 458 460 463
Birkhoff G.      I: 421
Birkhoff — Khinchin theorem      II: 392 463
Bishop E.      I: 423; II: 146 463
Blackwell D.H.      II: 50 199 338 370 428 429 454 462
Blau J.H.      II: 453
Bledsoe W.W.      II: 444
Bliss G.A.      I: 410
Bloom W.R.      II: 451
Blumberg H.      I: 421
Bnczolich Z.      I: 172; II: 410
Bobkcv S.G.      I: 431; II: 150 451
Bobynin M.N.      I: 324
Boccara N.      I: 413
Bochner S.      I: 220 430; 309 447 457
Bocnher theorem      I: 220; II: 121
Bogachev V.I.      I: 198 382 408 411 420 431; 98 142 144 167 170 199 202 225 228 229 236 301 302 305 311 319 396 410 418 426 427 433 438 439 443 448 451 452 454 456 457 460 464
Boge W.      II: 323
Bogoliouboff (Bogolnbov, Bogoljubov) N.N.      I: viii; II: 318 442 452 458 460
Bogoljubov (Bogolubov) A.N.      I: 416
Bokshtein M.F.      II: 45
Bol P.      II: 237
Boman J.      I: 228
Boolean, $\sigma$-homomorphism      II: 321
Boolean, algebra      II: 326
Boolean, algebra, metric      I: 53
Boolean, isomorphism      II: 277
Borel $\sigma$-algrhra      I: 6; II: 10
Borel E.      I: v vii 6 90 106 409 410 416 417 427 430; 254 439
Borel function      I: 106
Borel lifting      II: 376
Borel mapping      I: 106 145;
Borel measure      I: 10; II: 68
Borel measure—complete space      II: 135
Borel selection      II: 38
Borel set      I: 6; II: 10
Borel — Cantelli lemma      I: 90
Borell C.      I: 226 431; 434 451
Borovkov A.A.      I: 413; II: 456
Botts T.A.      I: 414
Bounded mean oscillation      I; 373
Bourbaki N.      I: 412; II: 59 125 172 442 443 447 448 450 452 458 459 460
Bourgain J.      I: 316; II: 397
Bouyssel M.      I: 415
Bouziad A.      I: 413; II: 138 225
Brascamp H.      I: 431
Bray H.E.      II: 452
Brehmer S.      I: 413
Brenier Y.      I: 382; II: 236
Bresskr D.W.      II: 440
Brezis H.      I: 248 298
Briane M.      I: 413
Bridges D.S.      I: 414
Brodskii M.L.      I: 235 408
Brooks J.K.      I: 434
Broughton A.      I: 84
Brow J.B.      II: 455
Browder A.      I: 414
Brown A.B.      I: 84
Bruckner A.M.      I: 210 332 395 401 402 413 421 436 438
Bruckner J.B.      I: 210 413 421 436 438
Brudno A.L.      I; 414
Bruijn N.G. de      II: 257
Brunn H.      I: 225
Brunn — Minkowski inequality      I: 225
Brunt B. van      I: 425
Bryc W.      II: 433
Brzuchowski J.      I: 421
Buchwalter H.      I: 413
Buiovsky L.      I: 421
Buldygin V.V.      I: 80 431;
Bungart L.      I: 413
Bunyakowsky (Bunyakovskii, Bounjakowsky) V.Ja.      I: 141 428
Bur kill J.C.      I: 410 413 423 437
Burago D.M.      I: 227 379 431
Burenkov V.I.      I: 391
Burgess J.P.      II: 37 43 463
Burk F.      I: 413
Burke D.K.      II: 123
Burke MR.      II: 137 463
Burkholder D.L.      II; 435
Burkinshaw O.      I: 413 415
Burrill C.W.      I: 413
Burstin C.      I: 400
Buseman H.      I: 215 437
BV[a,b]      I: 333
C(X)      II: 3
C(X,Y)      II: 3
Caccioppoli R.      I: 378 433
Caccioppolli set      I: 378
Caffarelli L.      I: 382; II: 236
Cafiero F.      I: 413 415 433
Calbrix J.      I: 413; II: 462
Calderon A.P.      I: 385. 436
Canonical triangular mapping      II: 420
Cantelli F.P.      I: 90 430
Cantor function      I: 193
Cantor G.      I: 30 193 416 417
Cantor set      I: 30
Cantor staircase      I: 193
Capacity, Choquet      II: 142
Capiriski M.      I: 413 415
Caratheodory C.      I: v 41 100 409 410 417 418 419 420 421; 164 463
Caratheodory meaeurability      I: 41
Caratheodory outer measure      I: 41
Cardinal, inaccessible      I: 79
Cardinal, measurable      I: 79; II: 77
Cardinal, non measurable      I: 79
Cardinal, real measurable      I: 79
Cardinal, two-valued measurable      I; 79
Carleman T.      I: 247
Carlen E.      I: 325
Carleson L.      I: 260
Carleson theorem      I: 260
Carlson T.      I: 61
Carothers N.L.      I: 413 436
Cartan H.      II: 460
Carter M.      I: 425
Castaing G.      II: 39 137 231 249 441
Casteren J.A. van      II: 450
Cauchy Bunyakowsky inequality      I: 141 255
Cauchy O.      I: 141 428
Cauty R.      II: 455
Cech complete space      II: 5
Cech E.      II: 5
Cenzer D.      II: 440
Chaccm R.V.      I; 434
Chae S.B.      I: 413 415
Chaimiont L.      II: 464
Chandrasekharan K.      I: 413
Change of variables      I: 194 343
Characteristic function of a measure      I: 197
Characteristic function of a set      I: 105
Characteristic, functional      I: 197; II: 122
Chatterji S.D.      II: 461 462 464
Chavef I.      I: 379
Chebyshev inequality      I: 122 405
Chebyshev P.L.      I: 122 260 428 430
Chebyshev — Hermite, polynomials      I: 260
Chehlov V.I.      I: 415
Chelidze V.G.      I: 437
Cheney W.      I: 413
Chentsov A.G.      I: 423
Chentsov {Cencov) N.N.      II: 59 172 441 44S
Chevet S.      II: 447 451
Choban MM.      II: 225 440 454 456
Chobanyan S.A.      II: 125 144 148 167 172 443 448 451 452 453
Choksi J.R.      II: 320 443 460
Chong K.M.      I: 431
Choqiiet G.      I: 413 417; 146 224 255 261 440 442 444 450
Choquet rapacity      II: 142
Choquet representation      II: 146
Choquet — Bishop — de Leuw theorem      II: 146
Chow Y.S.      I: 413
Christensen J.P.R.      II: 168 441 451
Chuprunov A.N.      II: 449
Cichon J.      I: 421
Ciesielski K.      I: 81 87
Cifuentes P.      I: 415
Cignoli R.      I: 413; II: 446
Clarkson inequality      I: 325
Clarkson J.A.      I: 325
Class, $\sigma$-additive      I: 33
Class, approximating      I: 13 14
Class, approximating, compact      I: 13 14
Class, Baire      I: 148
Class, compact      I: 13 50 189
Class, Lorentz      I: 320
Class, monocompact      I: 52
Class, monotone      I: 33 48
Closahle martingale      II: 351
Closed set      I: 2
co-Souslin act      II: 20
Coanalytic      II: 20
Coifman R.R.      I: 375
Colin D.L.      I: 413; II: 463
Collins H.S.      II: 447
Comfort W.      II: 44 450
Compact      II: 5
Compact, class      I: 13 50 189
Compact, extremally disconnected      II: 244
Compact, space      II: 5
Compactification, Stone — Cech      II: 5
Compactness in $L^{0}(\mu)$      I: 321
Compactness in $L^{p}$      I: 295 317
Compactness, relative      II: 5
Compactness, sequential      II: 5
Compactness, weak in $L^{1}$      I: 285
Compactness, weak in $L^{p}$      I: 282
Complete measure      I: 22
Complete metric space      I: 249
Complete normed space      I: 249
Complete structure      I: 277
Complete, $\sigma$-algebra      I: 22
Completely regular, space      II: 4
Completeness mod0 with respect to basis      II: 282
Completeness with respect to a basis      II: 280
Completion of a $\sigma$-algebra      I: 22
Completion of a measure      I: 22
Completion regular measure      II: 134
Complex-valued function      I: 127
Concassage      II: 155
Condition, Dini      I: 200
Condition, Stone      II: 105
Conditional expectation      II: 340 461
Conditional measure      II: 357 358 380 462
Conditional measure in the sense of Doob      II: 381
Conditional measure, regular      II: 357 358 462
Constantinescu C.      I: 413; II: 455
Contiguity      II: 256
Continuity from below of outer measure      I: 23
Continuity of a measure at aero      I: 10
Continuity, approximate      I: 369
Continuity, set of a measure      II; IfSfi
Continuous measure      II: 133
Continuum Hypothesis      I: 78
conv A      I: 40
Convergence in $L^{1}$      I: 12ft
Convergence in $L^{p}$      I: 29S
Convergence in distribution      II: 176
Convergence in measure      I: 111 306
Convergence in the mean      I: 128
Convergence of measures, setwise      I: 274 291;
Convergence of measures, weak      II: 175
Convergence, almost everywhere      I: 110
Convergence, almost uniform      I: 111
Convergence, almost weak in L1      I: 289
Convergence, martingale      II: 354
Convergence, weak      I: 281
Convergence, weak in $L^{p}$      I: 282
Convex function      I: 153
Convex hull of a set      I: 40
Convex measure      I: 226 378;
Convolution of a function and a measure      I: 20ft
Convolution of integrable functions      I: 205
Convolution of measures      I: 207
Conway J.      II: 455 456
Cooper J.      II: 451
Cornfeld I.P.      II: 391
Corson H.H.      II: 333
Cotlar M.      I: 413; II: 446
Countable additivity      I: 9 24
Countable additivity, uniform      I: 274
Countable subadditivity      I: 11
Countably compact space      II: 5
Countably determined set of measures      II: 230
Countably generated, $\sigma$-algebra      I: 91; II: 16
Countably paracompact space      II: 5
Countably separated, $\sigma$-algebra      II: 16
Countably separated, set of measures      II: 230
Courrege P.      I: 413
Covariance of a measure      II: 143
Covariance, operator      II: 143
Cover      I: 345
Cox G.V.      II: 225 455 456
Cramer H.      I: 412; II: 453
Crauel H.      II: 456
Craven E.D.      I: 413
Criterion of compactness in $L^{p}$      I: 295
Criterion of de la Vallee Poussin      I: 272
Criterion of integrability      I: 136
Criterion of measurability      I: 22
Criterion of uniform integrability      I: 272
Criterion of weak compactness      I: 285
Criterion of weak convergence      II: 179
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте