Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Bogachev V.I. — Measure Theory Vol.2
Bogachev V.I. — Measure Theory Vol.2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Measure Theory Vol.2

Автор: Bogachev V.I.

Аннотация:

Measure theory is a classical area of mathematics born more than two thousand years ago. Nowadays it continues intensive development and has fruitful connections with most other fields of mathematics as well as important applications in physics.

This book gives an exposition of the foundations of modern measure theory and offers three levels of presentation: a standard university graduate course, an advanced study containing some complements to the basic course (the material of this level corresponds to a variety of special courses), and, finally, more specialized topics partly covered by more than 850 exercises.

Volume 1 (Chapters 1-5) is devoted to the classical theory of measure and integral. Whereas the first volume presents the ideas that go back mainly to Lebesgue, the second volume (Chapters 6-10) is to a large extent the result of the later development up to the recent years. The central subjects in Volume 2 are: transformations of measures, conditional measures, and weak convergence of measures. These three topics are closely interwoven and form the heart of modern measure theory.

The organization of the book does not require systematic reading from beginning to end; in particular, almost all sections in the supplements are independent of each other and are directly linked only to specific sections of the main part.

The target readership includes graduate students interested in deeper knowledge of measure theory, instructors of courses in measure and integration theory, and researchers in all fields of mathematics. The book may serve as a source for many advanced courses or as a reference.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 2007

Количество страниц: 500

Добавлена в каталог: 22.05.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Fundamental sequence in $L^{1}(\mu)$      I: 116
Fundamental sequence in the mean      I: 116
Fusco N.      I: 379
Galambos J.      I: 103 413
Gale S.L.      II: 131
GanEsler P.      I: 413; II: 244 370 453 456
Gaposhkin theorem      I: 289 434
Gaposhkin V.F.      I: 289 317 434; 464
Garcia-Cuerva J.      I: 375
Gardner R.J.      I: 215 226; 131 134 135 155 165 215 225 443 449 450 451 463
Gariepy R.F.      I: 379 437
Garling D.      II: 224 255 309 337 447 456 458
Garnir H.G.      I: 413
Garsia A.M.      I: 261; II: 391
Gateaux R.      II: 254 452
Gaughan E.      I: 413
Gaussian measure      I: 198
Gelbaum B.      I: 415; II: 330
Gelrand (Gel’fand) I.M.      II: 447
Generalized derivative      I; 377
Generalized inequality, Hoelder      I: 141
Generated $\sigma$-algebra      I: 4 143
Generated algebra      I: 4
Genet J.      I: 415; II: 413
George C.      I: 87 91 173 307 415
Georgii H.-O.      II: 464
Gerard P.      II: 456
Giaquinta M.      I: 379; II: 231 252
Gibbs J.W.      II: 416
Gigli N.      II: 454 460
Giinzler H.      I: 413
Gikhman I.I.      I: 413; II: 98 453
Gilat D.      II: 432
Gillis J.      I: 90
Girardi M.      I: 434
Giustu E.      I: 379
Givens C.R.      II: 456
Gladysz S.      I: 102
Glazkov V.N.      I: 95 421
Glazyrma P.Yu.      I: 169
Gleason A.M.      I: 413
Glicksberg I.      II: 130 451
Glivenko E.V.      II: 450
Gnedenko B.V.      I: 412; II: 442 444
Gnedenko V.I.      I: 425 437; 265 452
Gneiting T.      I: 246
Godement R.      I: 414
Godfrey M.C.      II: 127 444
Goedel K.      II: 444
Goffman C.      I: 399 413
Goguadze D.F.      I: 435 437
Gohman E.H.      I: 324 425
Goldberg R.R.      I: 413
Goldstine H.H.      II: 445
Goluzina M.G.      I: 415
Gol’dshtein V.M.      I: 379; II: 142
Gomes R.L.      I: 437
Gordon R.A.      I: 353 357 406 437
Gorin E.A.      II: 451
Gotze F.      I: 431; II: 260
Gould G.      II: 451
Gouyon R.      I: 413
Gowurin M.K.      I: 160 276 322
Graf S.      II: 41 64 310 311 321 441 448 450 451 462
Gramairi A.      I: 413
Grande Z.      II: 164 445
Granirer E.E.      II: 455
Graph of a mapping      II: 15
Graph, measurable      II: 15
Grauert H.      I; 413
Grave D.      I: 436
Graves L.M.      I: 413
Gray L.      I: 413
Greenleaf F.P.      II: 333 460
Grekas S.      II: 134 444 451 463
Greuander U.      II: 447
Grigor’yan A.A.      I: 172
Gromig W.      II: 256
Gromov M.      I: 246; II: 459
Gronwall T.H.      II: 301
Gross L.      II: 449
Grothendieck theorem      I: viii; II: 136 241 244 262 452
Grothendjeck A.      I: viii; II: 136 241 244 262 452
Gruber P.M.      I: 422
Gruenhage G.      II: 131 155
Gryllakis C.      II: 134 444 450 463
Grzegorek E.      I: 421; II: 133
Guiilemm V.      I: 413
Gunther N.M.      I: 425; II: 453
Gupta V.P.      I: 414
Gurevich B.L.      I: 397 414 438; 446
Gut A.      I: 413
Guzman M. de      I: 67 346 353 413 436
Gvishiani AD.      I: 414 415
Haar A.      I: viii 306 417; 442 460
Haar functions      I: 296 306
Haar measure      II: 304 460
Haaser N.B.      I: 413
Hacaturov A.A.      I: 228
Hackenbroch W.      I: 413; II: 311
Hadwiger H.      I: 82 227 246 431
Haezendonck J.      II: 459
Hagihara R.      II: 449
Hahn decomposition      I: 176
Hahn H.      I: v vi 67 176 274 402 409 411 415 417 418 419 421 423 428 429 432 433 435; 452
Hahn — Banach theorem      I: 67
Hajfesz P.      I: 381
Hake H.      I: 437
Hall E.B.      I: 81 228 395 414; 171
Hall P.      II: 461
Halmoa P.      I: v 180 279 412; 308 391 442 444 449 458 460 461
Hamel basis      I: 65 86
Hammersley J.M.      II: 199
Hanin L.G.      II: 457
Hanisch H.      I: 104
Hankel H.      I: 416
Hanner inequality      I: 325
Hanner O.      I: 325
Hardy and Littlewood inequality      I: 243
Hardy G.H.      I: 243 261 308 429
Hardy inequality      I: 308
Harnack A.      I: 416 417
Hart J.E.      II: 158
Hartman S.      I: 413; II: 161 254 463
Haupt O.      I: 411 413
Hausdorff dimension      I: 216
Hausdorff measure      I: 216
Hausdorff space      II: 4
HausdorfFF.      I: 81 215 409 410 417 420 421 422 430; 28 439
Haviland E.K.      II: 453
Havrn V.P.      I: 413
Hawkins T.      I: 417 423
Haydon R.      II: 136 224 255 256 309 337 456 458
Hayes C.A.      I: 438; II: 461
Hazod W.      II: 451
Heath D.      II: 462
Hebert D.J.      II: 136 450
Heinieompact space      II: '22[\
Heinonen J.      I: 375
Helga&on S.      I: 227
Hellinger integral      I: 30(1 435
Hellinger metric      I: 301
Hellmger E.      I: 301 435
Helly E.      II: 452
Hengartner W.      II: 257
Hennequin P.-L.      I: 413; II: 444 453 462
Henry J.P.      II: 84 85 443
Henstock R.      I: vii 353 414 437
Henstock — Kurzweil integrability      I: 354
Henstock — Kurzweil integral      I: 354 437
Henze E.      I: 414
Herer W.      II: 120
Herglotz G.      I: 430
Hermite Ch.      I: 260
Herz C.S.      II: 332
Hesse C.      I: dl4
Heuser H.      I; 414
Hewitt E.      I: 325 414 431; 308 320 408 447 448 451 460 464
Heyde C.C.      II: 461
Heyer H.      II: 451
Hilbert D.      I: 255 431
Hilbert space      I: 255
Hildebrandt T.H.      I: 410 414;
Hille E.      I: 414
Hinderer K.      I: 414
Hirsch F.      II: 446
Hirsch W.M.      I: 104
Hlawka E.      II: 237 258
Hnmke P.D.      I: 404
Hobson E.W.      I: 410
Hochkirchen T.      I: 417 423
Hodakov V.A.      I: 401
Hoegnaes G.      II: 451
Hoelder O.      I: 140
Hoffman K.      I: 414
Hoffmann D.      I: 414
Hoffmann-Jergensen J.      I: 95 414 421; 46 56 215 217 220 254 410 440 441 455 456 462
Holder inequality      I: 140
Holder inequality, generalized      I: 141
Holdgruen H.S.      I: 414
Holicky P.      II: 227 335
Homeomorphism      II: 4
Homeomorphism of measure spaces      II: 28fi
Hopf E.      I: viii 419 429; 458
Howard E.J.      I: 369
Howroyd J.D.      II: 140
Hu S.      I: 414
Huff E.W.      I: 84
Hulanicki A.      I: 422
Hull convex      I: 40
Hunt G.A.      I: 309
Hunt R.A.      I: 260
Il’in V.P.      I: 379
Image of a measure      I: 190; II: 267
Inaccessible cardinal      I: 79
Indefinite integral      I: 338
Independence of mappings      II; 399
Independence of sets      II: 400
Independence, Kolmogorov      II: 390
Independent mappings      II: 399
Independent sets      II: 400
Indicator of a set      I: 105
Indicator, function      I: 105
Induced topology      II: 2
Inductive limit, strict      II: 207
Inequality, Anderson      I: 225
Inequality, Bessel      I: 259
Inequality, Brunn — Minkowski      I: 225
Inequality, Cauchy — Bunyakowsky      I: 141 255
Inequality, Chebyshev      I: 122 405
Inequality, Clarkson      I: 325
Inequality, Doob      II: 353
Inequality, Hanner      I: 325
Inequality, Hardy      I: 308
Inequality, Hardy and Littlewood      I: 213
Inequality, Holder      I: 140
Inequality, Holder, generalized      I: 141
Inequality, isoperimetric      I: 378
Inequality, Ivanov      II: 397
Inequality, Jensen      I: 153
Inequality, Kolmogorov      II: 432
Inequality, Minkowski      I: 142 226' 231
Inequality, Pinsker — Kullback — Csiszar      I: 155
Inequality, Poincare      I; 378
Inequality, Sard      I: 196
Inequality, Sobolev      I: 377 378
Inequality, weighted      I: 374
Inequality, Young      I: 205
Infimum      I; 277
Infinite measure      I: 24 97 235
Infinite measure, Lebesgue integral      I: 125
Infinite product of measures      I; 188
Ingleton A.W.      I: 414
Inner measure      I: 57 70
Inner measure, abstract      I: 70
Inner product      I: 254
Integrability criterion      I: 136
Integrability uniform      I; 285
Integrability, Henstock - Kurzweil      I: 354
Integrability, McShane      I: 354
Integral of a complex-valued function      I: 127
Integral of a mapping in $\mathds{R}^{n}$      I: 127
Integral, Daniell      II: 99 101 445
Integral, Hellinger      I: 300 435
Integral, Henstock — Kurzweil      I: 354 437
Integral, indefinite      I: 338
Integral, Kolmogorov      I: 435
Integral, Lebesgue      I: 118
Integral, Lebesgue — Stieltjes      I: 152
Integral, Lebesgue, of a simple function      I: 116
Integral, McShane      I: 354
Integral, Riemann      I: 138
Integral, Riemann, improper      I: 138
Integration by parts      I: 343
interval      I: 2
Interval, Sorgenfrey      II: 9
Interval, tagged      I: 353
Interval, tagged, free      I: 353
Invariant measure      II: 267 318
Inverse Fourier transform      I: 200
Ionescn Tulcea G.      II: 386 407 431 462 463
Ionescu Tulcea A.      II: 151 407 431 452 462 463
Ionescu Tulcea theorem      II: 386 163
Isomorphism of measurable spaces      II: 12
Isomorphism of measure algebras      II: 277
Isomorphism of measure spaces      II: 275. 323
Isomorphism, Boolean      II: 277
Isomorphism, mod0      II: 275
Isomorphism, point      II: 275
Isoperimetric inequality      I: 378
Ivanov inequality      II: 397
Ivanov L.D.      I: 437
Ivanov V.V.      I; 237; II: 397 463
Iwanik A.      II: 174
Jackson R.      II: 61
Jacobian      I: 194 379
Jacobs K.      I: 414; II: 434 461 463
Jacod J.      II: 249
Jain P.K.      I: 414
Jakubowski A.      II: 53 454
James R.C.      I: 414
Jankoff theorem      II: 34 441
Jankoff W. (Yankov V.)      II: 34 441
Janssen A.      I: 130; II: 410
Janssen A.J.E.M.      I: 414 446
Jayne J.      I: 421; II: 8 44 46 49 56 61 62 440 452
Jean R.      I: 414
Jech Th.J.      I: 62 78 79 SO;
Jefferies B.      I: 423
Jeffery R.      I: 414
Jensen inequality      I: 153
Jensen J.L.W.V.      I: 153 429
Jessen B.      I: 412 419 429 435 437; 453 461
Jimenez Pozo M.A.      I: 414
Jimenez-Guerra P.      II: 452
Jirina M.      II: 462
Joag-Dev K.      I: 431
John F.      I: 373
Johnson B.E.      II: 129 163
Johnson D.L.      II: 460
1 2 3 4 5 6 7 8 9 10
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте