Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete and Combinatorial Mathematics: An Applied Introduction

Авторы: Grimaldi R.P., Rothman D.J.

Аннотация:

Provides an introductory survey in both discrete & combinatorial mathematics. Intended for the beginning student designed to introduce a wide variety of applications & develop mathematical maturity of the student by studying an area that is so different form the traditional coverage in calculus & different equations. DLC: Mathematics. — This text refers to an out of print or unavailable edition of this title.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 5th edition

Год издания: 2004

Количество страниц: 833

Добавлена в каталог: 15.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
n-dimensional hypercube      532
n-fold product      248
n-tuple      248
Nand (connective)      66
NAND gate      727 728
Napier, John      A-6
Natural logarithm      284 A-6
Natural numbers      133
Natural position      402
Nazi cipher      333
Neal, David      444
Nearest neighbor      771
Necessary and sufficient      48
Necessary condition      48
Negation      48
Negation (logic gate)      719
Negation of quantified statements      92 96 97
Negative      138
Negative integers      227
Nemhauser, G.L.      562 575 576
Nested multiplication method      301
network interface      12
network number      12
Network, dual      551—553
Network, electric power      666
Network, electrical      551 552 573 574 581 622
Network, gating      309 719—722 731
Network, logic      719 720
Network, multiple output      720 721
Network, parallel      64
Network, PERT      357 377
Network, Program Evaluation and Review Technique      357 377
Network, series      65
Network, switching      64—66
Network, transport      644—658
Neumann, Peter M.      796 797
Neutrons      486
New York Times      707
Newsom, Carroll V.      119 120 304 305
Newton, Sir Isaac      303
Next state      320
Next state function      320 682
Nicomachus of Gerasa      707
Nievergelt, Jurg      506 508
Nilsson, Nils J.      119 120
Nine-times repetition code      773 see
Niven, Ivan      243 244 444 445 708
No degree      800
Nobel prize      187
Node      349 514 see Vertices"
Noether, Emmy      706 707
Noise (in a binary symmetric channel)      761
Non-Euclidean geometry      820
Nonabelian group      749
Nonadjacent vertices      561
Noncommutative operation      590
Noncommutative ring      675 705
Nonempty universe      89
Nonequivalent configurations      783 784 790 791
Nonequivalent seating arrangements      784
Nonequivalent states      374
Nonexecutable specification statement      369
Nonhomogeneous recurrence relation      450 451 456 470—481
Nonlinear recurrence relations      449
Nonnegative integers      133
Nonplanar graph      540 541 543
Nontaking kings      510
Nontaking rooks      404 407
Nontrivial subgroup      748
Nonzero complex numbers      134
Nonzero division      221 356
Nonzero rational numbers      133
Nonzero real numbers      134
Nor (connective)      66
NOR gate      727 728
Normal subgroup      795 831
Not p      48
Not... and (connective)      66
Not... or (connective)      66
Null child      594 595
Null graph      523
Null set ($\emptyset$)      127
Number of divisions      458 459
Number of positive divisors      239
Number theory      29 188 222 242—244 303 304 394 411 412 432 442 673 705 706
Numerical analysis      304
O(g) (order of g)      290
O(g) on      5 498
Object program      253 302
octahedron      548
Octal system (base 8)      225
od(v)      535
od(z)      644
Odd integer      113 218
Odd-degree vertices      531
Officers      819
Ohm’s Law      573
Ohm’s Law for electrical flow      573
On the Theory of Groups, as Depending on the Symbolic Equation $\theta^n=1$      794
One element of a Boolean algebra      733
One factor      666
One-dimensional array      254
One-terminal-pair-graph      552
One-to-one correspondence      279 303 370 427 428 435 526 551 660 A-23—A-27
One-to-one function      255—257 279 280 409 410
One-unit delay machine      329
One’s complement      227—229
Onto function      260—265 287 288 392 411 439 682 699 739
Open contact      551 553
Open interval      99 100 134 164
Open statement      86 87 89—92 105 106 109 123 126 194 195
Open switch      64 551 553
Open trail      534
Open walk      515 516
Operand      136
Operation      136
Operations research      574 631 667
Optimal prefix code      613
Optimal spanning tree      638 639 642
Optimal tree      612 613 640—642
Optimization      41 324 562 581 631
Or (connective)      48
Or (exclusive)      48 56
OR gate      719—721
Order      6 14 15 30 125 130
Order at least      293
Order for a Boolean algebra      736
Order for functions      290 292 293
Order for the vertices of a tree      592 593
Order g (or, Order of g), O(g)      290—292
Order in a tree      588 589
Order of a finite field      812 813
Order of a group      746
Order of a group element      754
Order of a linear recurrence relation      456
Order of quantifiers      98
Order-preserving function      366 509
Ordered array      501—503
Ordered binary tree      488
Ordered pair      152 176 248 252 253 282 284
Ordered rooted tree      588
Ordered set      129 A-25
Ordered sum      205
Ordered tree      594
Ordered triples      827
Orderly permutation      455
Ordinary generating function      436 440 443 444 see
Ore, Oystein      561 668 669
Organic compounds      791—793
Origin (of an edge)      349 514
Orlin, James B.      562 575 638 643 654 668
Orthogonal Latin squares      816—818 831
Out degree of a vertex      535 588 644
Outcome      150 151 154 155 158 175 177 178
Outgoing degree of a vertex      535
Output (for a finite state machine)      309 319
Output (from a gate)      720
Output (from an algorithm)      253 289
Output alphabet      320 321
Output function      320 682
Output string      321 322
Overcounting      19 20 411
Overflow error      229
O’Bryant, Kevin      623 624
p is sufficient for q      48
p logically implies q      69
p(m, n), the number of partitions of m into exactly n positive summands      444
p(n), the number of partitions of n      432 443
P(n, r)      7 15 41 436
Pair of orthogonal Latin squares      816—819 823
Pairs of rabbits      505
Pairwise disjoint subboards      405 408
Pairwise incidence matrix      826
Palindrome      13 174 197 319 425 426 431 432 460 461 469
Palmer, Edgar M.      574 576
Pan balance      602 603
Papadimitriou, Christos H.      333 334
Parallel algorithm      531
Parallel classes      822—824 828
Parallel computer      531
Parallel lines      822 827 828
Parallel network      64
Parent      588 593 597 613
Parenthesize an expression      38 39 490 494
Parity checks      778
Parity-check code      764 765 see
Parity-check equations      770 777 778 see
Parity-check matrix      772 774 776—779 see
Parker, Ernest Tilden      819 831
Partial breadth-first spanning tree      656
Partial fraction decomposition      426 483 485
Partial function      260
Partial order      337 341—343 356—364 376 377 476 533 737 738 see
Partial order for a Boolean algebra      736—738
Partial ordering relation      357 see "Poset"
Partial semipath      652
Partially ordered set      357 377 see
Particular solution      471 475 479 482
Partition      366—375 377 378
Partitions of integers      29 31 432—435 443 444
Pascal, Blaise      42 188 244
Pascal’s triangle      133 135 188
Patashnik, Oren      304 305 506 507
Path (in a graph)      351 516 517 556 582
Path (staircase)      9 36—38 130 132
Pattern      124
Pattern inventory      783 789—793
Pawlak, Zdzislaw      623
Peacock, George      186
Peano, Giuseppe      188 243 377
Peano’s postulates      243
Pegs      472 473
Peile, Robert E.      796
Peirce, Charles Sanders      119 377
Pendant vertex      533 549 583 584
Pennies      462 495
Pentium processor      5
Perfect integer      241
Perfect matching      666
Perfect square      90 239
Perfect, H.      668 669
Perl      4
Permutation      6—8 14 15 41 42 217 220 393 394 403 408 411 436 452 453 490—492 495 506 see
Permutation group      749 750 781 782 830 see
Permutation matrix      670
PERT network      357 377
Petersen graph      543 566 574
Petersen, Julius Peter Christian      574
Peterson, Gerald R.      742 743
Pi notation      239
Pigeonhole Principle      273—278 287 288 303—305 327 328 796
Plaintext      690—692 760
Planar graph      540—553 573
Planar-one-terminal-pair-graph      552
Planarity of graphs      352 615 see
Platonic solids      547 548 556
Pless, Vera      796 797
Points at infinity      828
Polaris submarine      357
Polish notation      591 592
Polya, George      623 625 745 796 797
Polya’s Method of Enumeration      623 779 789 891
Polya’s theory in graphical enumeration      574
Polyhedra      573
Polynomial equation      794
Polynomial evaluation algorithm      301
Polynomial in the indeterminate x      799
Polynomial order      293
Polynomial ring      801 830
Polynomial time complexity      293
pop      490—493
POSET      357—364
Poset, antichain      381
Poset, chain      381
Poset, glb (greatest lower bound)      363
Poset, greatest element      363
Poset, greatest lower bound (glb)      363
Poset, Hasse diagram      358—361
Poset, lattice      364
Poset, least element      363
Poset, least upper bound (lub)      363
Poset, length of a chain      381
Poset, lower bound      363
Poset, lub (least upper bound)      363
Poset, maximal chain      381
Poset, maximal element      362
Poset, minimal element      362
Poset, order-preserving function      366
Poset, topological sorting algorithm      360 361 363
Poset, total order      359—361
Poset, upper bound      363
Positive closure of a language      315
Positive integers      133 136 193
Positive rational numbers      133
Positive real numbers      134
Postorder (traversal)      592—595 623 628
Postulates      87 98 243
Power series      417 418 433 443 484
Power set      128 476 533
PowerBall      15
Powers of $\Sigma$      310
Powers of a function      282
Powers of a group element      747
Powers of a language      315
Powers of a real number      A-2
Powers of a relation      345
Powers of a ring element      802
Powers of an alphabet      310
Powers of strings      312
Pr(B|A)      167
Precedence graph      350
Precedes      347 348
Precise instructions      233
Pred (predecessor) function      307
Prefix      312 313 315 338
Prefix codes      609 611 613 614 624
Prefix notation      591
Pregel River      533
Preimage (of a set)      285 286
Preimage (of an element)      253
1 2 3 4 5 6 7 8 9 10 11 12 13
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте