Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete and Combinatorial Mathematics: An Applied Introduction

Авторы: Grimaldi R.P., Rothman D.J.

Аннотация:

Provides an introductory survey in both discrete & combinatorial mathematics. Intended for the beginning student designed to introduce a wide variety of applications & develop mathematical maturity of the student by studying an area that is so different form the traditional coverage in calculus & different equations. DLC: Mathematics. — This text refers to an out of print or unavailable edition of this title.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 5th edition

Год издания: 2004

Количество страниц: 833

Добавлена в каталог: 15.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
STIRLING, JAMES      303
Stirling’s formula      304
Stoll, Robert R.      119 120
Storage circuits      5
Strang, Gilbert      A-21
Street, Anne Penfold      796 797 831 832
String      12 18 19 128 129 309—323 328 337 338 609 610 761
String, $\lambda$ (the empty string)      310 323
String, concatenation      311 312
String, empty string      310 323
String, equality of strings      311
String, length of a string      18 310—312
String, palindrome      319
String, powers of strings      312
String, prefix      312 313 315
String, proper prefix      312 315
String, proper substring      313
String, proper suffix      312
String, reversal      317 319
String, substring      313 315 328 338
String, suffix      312 313 315
Strongly connected component      352
Strongly connected directed graph      351 539
Strongly connected machine      331
Structured programming      203
Subboard      404 405 408 409
Subfield      809 811 812
Subgraph      521 523 525 582 588
Subgraph induced by a set of vertices      522
Subgroup      748 749 756—758
Subgroup generated by a group element      754
Sublist      450 606 607
Submachine      331 682
Subring      682—684 699 702
Subsections of strings      312
Subsequence      A-26
Subset      124—128 130—132 138 140 141 149
Subset relation      250 358 359 362 363 737
Subsets with no consecutive integers      457
Substitution rules (in logic)      60—62 69 71 72 76 80
Substring      313 315 328 338
Subtraction      137 224 225 227 228 356
Subtraction (in a ring)      680
Subtree      488 583 588 590 593—596 602
Succ (successor) function      307
Success      161 178 179 182
Successor      243 307
Such that      124
Sufficient condition      48
Suffix      312 313 315 338
Suffix function      318
Sum of a geometric series      476
Sum of atoms      738
Sum of bits      720 721
Sum of Boolean functions      712
Sum of matrices      A-12
Sum of minterms      717
Sum of squares      200
Sum of the weights of the edges      631
Summation      17 18
Summation formulas      32 33 35 47 196 197 200 259 430 441 470
Summation notation      17 18
Summation operator      440 441
Summation, index      17
Summation, lower limit      17
Summation, upper limit      17
Summations      292
Sumo wrestlers      277
Sun (R) Microsystems, Inc.      5
Superimposed      815
Superset      138
Suppes, Patrick C.      189
Surjective function      260
Switches (in a network)      64—66 551
Switches in series      65
Switching circuits      742
Switching function      711 712 719 742
Switching network      64—66
Sylow, Ludwig      795
Sylvester, James Joseph      411 A-11
Symbolic logic      118
Symmetric Boolean function      744
Symmetric difference      136 313
Symmetric group ($S_n$)      787 789 794 830
Symmetric property (of a relation)      339—343 347 348 353 366—369 376 377
Syndrome      771 775—777 779 see
Syndrome decoding      779
System of congruences      702 707 708
System of distinct representatives      663 668
System of linear equations      A-18 A-19
System of recurrence relations      486 487
Systematic form      778 see
Szekeres, George      276
T-shaped figure      121
Table for a relational data base      271
Table for decoding      774—776 see
Table of Big-Oh forms      293
Table of identities for generating functions      424
Table of particular solutions for the method of undetermined coefficients      479
Table of rules for negating statements with one quantifier      96
Table of rules of inference      78
Table of Stirling numbers of the second kind      264
Tabular form      71
Tabulation algorithm      742
Tallahassee      17
Taniyama, Yutaka      706
Tarry, G.      819
Tartaglia, Niccolo      188
Taubes, G.      795 797
Tautology      53 58—61 67 69 71 76 113
Taylor, Richard      706
Telephone communication system      320
Terminal (in a switching network)      64
Terminal vertex      588
Terminals      552
Terminating vertex      349 514
Terminus      349 514
Ternary operation      306
Ternary strings      469
tetrahedron      547 548 792
Thatcher, Margaret      74
The Book of Creation (Sefer Yetzirah)      41
The Calculus of Inference, Necessary and Probable      118
The Godfather      186 692
The Mathematical Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning      118
Theorem      53 67 70 84 87 98 99 105 106 110 112 113 117 119 193 222
Theorie Analytique des Probabilites      443
Theory of equations      411
Theory of graphs      see "Graph theory"
Theory of groups      see "Group theory"
Theory of languages      18 332 337
Theory of matrices      411
Theory of numbers      see "Number theory"
Theory of rings      see "Ring theory"
Theory of sets      see "Set theory"
Theory of types      187
There exists an x such that      88
Therefore ($\therefore$)      71
Third Reich      333
Third-order linear homogeneous recurrence relations with constant coefficients      463 464
Thomas, R.      575 576
Thompson, John      795
Tile      470
Tiling      464
Time complexity function      290 297—299 450 452 496 498 500 501 605—609 624 see
Time complexity function for the bubble sort      450—452
Time complexity function for the merge sort      607—609
Tolerance      650
Top (of a stack)      490
Top-down approach      41
Topological sorting      359 377
Topological sorting algorithm      360 361 363
Total order      359—361 377
Totally ordered poset      359
Tournament      559 602
Towers of Hanoi      472 505
Trail      516 517 528
Transfer sequence      331
Transfinite cardinal number      303
transform      253
Transformation      36 37
Transient state      330
Transition      320
Transition sequence      331
Transition state      321
Transition table      321
Transitive property (of a relation)      339—343 347 348 353 357 358 366—368 376 377
Transmission errors      762 767
Transmission of digital signals      188
Transmitter      767 769
Transport network      324 644—658 660—663 665 667 668
Transport network, $c(P, \overline{P})$      646 648 652 654
Transport network, a-z cut      645
Transport network, associated undirected graph      645 650
Transport network, backtrack      653 656
Transport network, backward edge      650 651 654
Transport network, capacity      644
Transport network, capacity for a vertex      657
Transport network, capacity of a cut      646 665
Transport network, capacity of an edge      644 645 650 654
Transport network, chain      650
Transport network, conservation condition      645 651
Transport network, cut      645—648 652 661 662
Transport network, definition      644
Transport network, Edmonds — Karp algorithm      653—657
Transport network, f-augmenting path      650—654 656 663
Transport network, flow in a network      644—654
Transport network, Ford — Fulkerson algorithm      654—657
Transport network, forward edge      650 651 654 655
Transport network, Max-Flow Min-Cut Theorem      649 652
Transport network, maximal flow      645 647
Transport network, network      644
Transport network, quasi-path      650
Transport network, saturated edge      645 649 650
Transport network, semipath      650—653
Transport network, sink      644—646 648 653
Transport network, source      644—646 648 653
Transport network, tolerance      650
Transport network, unsaturated edge      645
Transport network, usable edge      653 655 656
Transport network, val(f)      645—648
Transport network, value of a flow      645—649 651—653
Transpose of a matrix      348
Transposition of a Ferrers graph      435
Trappe, Wade      693 708 795 797
Traveling salesman problem      562 574
Treatise on Algebra      186
TREE      250 488 489 573 581—629 641 642 653 655 656 796 see
Tree diagram      154 157 248—250 331 488
Tree traversal      594
Tree, algorithm for articulation points      619 620
Tree, algorithm for constructing a Huffman tree      613
Tree, algorithm for counting labeled trees      586 587
Tree, algorithm for the universal address system      589
Tree, ancestors      588 616—619
Tree, articulation point      615—621 624
Tree, back edge      616—619 621
Tree, backtrack(ing)      593 596—598 600 616
Tree, balanced tree      601 602
Tree, biconnected component      615 619—621 624
Tree, binary rooted tree      589 590 594 595
Tree, binary tree      488 595 600
Tree, branch nodes      588
Tree, branches      488 614
Tree, breadth-first search      598—600
Tree, breadth-first search algorithm      598 599
Tree, breadth-first spanning tree      599
Tree, caterpillar      627 628
Tree, characteristic sequence      625
Tree, child      588 590 594 598 617—620
Tree, complement of a subgraph      586
Tree, complete binary tree      589 595 596 600 605
Tree, complete binary tree for a set of weights      612
Tree, complete m-ary tree      600—602
Tree, complete ternary tree      603
Tree, decision tree      602 603
Tree, definition      581
Tree, depth-first search      597 598 600 617 624
Tree, depth-first search algorithm      597 598 617
Tree, depth-first spanning tree      615—620
Tree, descendants      588 616—619
Tree, dfi(v)      616 619—621
Tree, dictionary order      589
Tree, directed tree      587
Tree, Fibonacci tree      626
Tree, forest      581 639 641 642
Tree, full binary tree      611
Tree, full m-ary tree      614
Tree, graceful tree      627
Tree, grandparent      593
Tree, height      601—603 611
Tree, Huffman tree      613 614
Tree, inorder (traversal)      594 595
Tree, internal vertices      588 591 593 601 612
Tree, Kruskal’s algorithm      639—641
Tree, labeled complete binary tree      610
Tree, labeled tree      586
Tree, leaf      588
Tree, left child      590 594 610 611
Tree, left subtree      590 592 594—596
Tree, level      588 589 593 597 607 611
Tree, level number      588 601 602 612
Tree, lexicographic order      589
Tree, m-ary tree      600
Tree, merge sort algorithm      496 608
Tree, minimal spanning tree      639 667 668
Tree, null child      594 595
Tree, optimal spanning tree      638 639 642
Tree, optimal tree      612 613 640—642
Tree, order for the vertices of a tree      588 589 592—595
Tree, ordered binary tree      488
Tree, ordered rooted tree      588
Tree, parent      588 593 597 613 619—621
Tree, pendant vertex      583 584
Tree, postorder (traversal)      592—595
Tree, prefix code      609 611 613 614 624
Tree, preorder (traversal)      592—596
Tree, Prim’s algorithm      641—643 653
Tree, quick sort      609
Tree, right child      590 594 610 611
Tree, right subtree      592 594—596 614
Tree, root      587—590
Tree, rooted Fibonacci tree      626
Tree, rooted tree      587—596 600 601
Tree, sibling      588 593 612
Tree, sorting      581 605 606 608
Tree, spanning forest      582
Tree, spanning tree      582 596 597 599 631 638 640
Tree, spine (of a caterpillar)      627 628
Tree, subtrees      583 588 590 593—596 602
Tree, terminal vertex      588
Tree, universal address system      589
Tree, W(T)      612
Tree, weight of a tree      612
Tree, weights for an optimal tree      612
Tremblay, Jean-Paul      704 708
Trend      33
Trial      179
Triangle inequality      767
Triangular number      193 198 482 572
1 2 3 4 5 6 7 8 9 10 11 12 13
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте