Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction
Grimaldi R.P., Rothman D.J. — Discrete and Combinatorial Mathematics: An Applied Introduction



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Discrete and Combinatorial Mathematics: An Applied Introduction

Авторы: Grimaldi R.P., Rothman D.J.

Аннотация:

Provides an introductory survey in both discrete & combinatorial mathematics. Intended for the beginning student designed to introduce a wide variety of applications & develop mathematical maturity of the student by studying an area that is so different form the traditional coverage in calculus & different equations. DLC: Mathematics. — This text refers to an out of print or unavailable edition of this title.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Издание: 5th edition

Год издания: 2004

Количество страниц: 833

Добавлена в каталог: 15.04.2008

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Premise      53 67 70 107 109—111
Preorder (traversal)      592—597 616 619 620 623
Prescribed order      597 599 620 653 655
Preservation of Boolean algebra operations      739
Preservation of ring operations      698
Prim, Robert Clay      638 641 667 669
Primary key      272
Prime characteristics      812
Prime factorization      238 240
Prime integer (or number)      116 193 221 222 230 237 238
Prime order (for a group)      758
Prime polynomial      807
Primitive statement      48
Prim’s algorithm      641—643 653
Princeton University      706
Principia Mathematica      119 187
Principle of cross classification      411
Principle of duality for a Boolean algebra      735
Principle of duality for Boolean functions      713
Principle of duality for Boolean variables      713
Principle of duality for logic      59
Principle of duality for set theory      141
Principle of inclusion and exclusion      261 385 389—397 402 407 411 412 415 659
Principle of Mathematical Induction      194—196 198 200—206 213—216 218 244 315 317 390 425 441 448 468 469 599 see "The
Principle of Strong Mathematical Induction      206
Private-key cryptosystem      693 759 760
probability      3 42 123 150—189 247 262 402 408 409 411 428 430 468 506 759—765
probability distribution      176 177 179 180 428 430
Probability rules and laws      172
Probability, $\mu_X$      177
Probability, $\sigma^2_X$      180
probability, additive rule      162 168 172
Probability, Axioms of probability      159 161
Probability, Bayes’Theorem      170 173 188
Probability, Bernoulli trial      161 178 179
Probability, Binomial probability distribution      179
Probability, Chebyshev’s Inequality      183 184 188
Probability, conditional probability      166—173
Probability, continuous sample space      164
Probability, discrete sample space      164 175
Probability, E(X)      111 182 183
Probability, elementary event      158
Probability, event      151 158 159
Probability, expectation      177
Probability, expected value      177 179 180
Probability, experiment      150—153
Probability, independent events      155 158 161 170
Probability, independent outcome      154 166 170 174
Probability, Kolmogorov, Andrei      159
Probability, law of total probability      169 170 173
Probability, mean      177 180 183
probability, multiplicative rule      168 172
Probability, mutually disjoint events      159
Probability, outcome      180 181 183
Probability, random variable      175—184
Probability, Rule of complement      159 172
Probability, sample space      150—155
Probability, standard deviation      180 182 183
Probability, variance      177 180
Problem of the 36 officers      819 831
Procedure for integer division      224
Procedure for the Euclidean algorithm      234
Proceedings of the Royal Geographical Society      565
Product of Boolean functions      712
Product of disjoint cycles      780 781 786
Product of matrices      A-14
Product of maxterms      717 718
Product of sets      248
Program Evaluation and Review Technique (PERT) network      357 377
Program verification      203
Projection      270—272
Projective plane      827 828
proof      10 47 84 103 104 119 see "Mathematical "Mathematical
Proof by contradiction      76 77 80 84 99 114 115 127 137 237 273 291
Proper coloring of a graph      565—568 570
Proper divisors of 0      221
Proper divisors of zero      675 677 689 801
Proper prefix      312 315
Proper subgroup      748
Proper subset      124—126
Proper substring      313
Proper suffix      312
Properties of a Boolean Algebra      735 736
Properties of a group      747
Properties of exponents      A-3
Properties of logarithms      A-6
Properties of the integers      193—246
Properties of the integers, Division algorithm      223
Properties of the integers, Euclidean algorithm      232 233
Properties of the integers, Fundamental Theorem of Arithmetic      238
Properties of the integers, greatest common divisor      231 232
Properties of the integers, least common multiple      236
Properties of the integers, mathematical induction      193—208
Properties of the integers, primes      193 221 222 230 237 238
Properties of the integers, Well-Ordering Principle      194
Proposition      47 see
Propositional calculus      735
Pruefer code      586 587
Prune (a tree)      596
Pruned tree      611
Pseudocode procedure for binary search      502
Pseudocode procedure for bubblesort      450
Pseudocode procedure for Euclidean algorithm      234
Pseudocode procedure for exponentiation      297
Pseudocode procedure for Fibonacci numbers      477—479
Pseudocode procedure for gcd (recursive)      455
Pseudocode procedure for linear search      296
Pseudocode procedure for modular exponentiation      693
Pseudorandom numbers      689
Public-key cryptosystem      759 760
push      490—493
Puzo, Mario      186 692
q is necessary for p      48
Quadratic equation      794
Quadratic order      293
Quadratic time complexity      299
Quantified open statement      87
Quantifiers      91 98 103—105 119 125 146 195 291
Quantifiers, $\exists x$      88
Quantifiers, $\forall x$      88
Quantifiers, bound variable      88
Quantifiers, connectives      88 89
Quantifiers, existential quantifier      87 88
Quantifiers, free variable      88
Quantifiers, implicit      89 90
Quantifiers, universal quantifier      87 88
Quantify      87
Quantum theory      A-11
Quartic equation      794
Quasi-path      650
Quaternary alphabet      474
Quaternary relation      271
Quaternary sequence      247
QUEUE      598 599
Quick sort      609
Quine — McCluskey method      727 742
Quine, Willard van Orman      742 743
Quintic equation      794 830
Quintilianus, Marcus Fabius      705
Quotient      221 223 224
Quotient group      831
r(C, x)      404—406 408
Rabbits      505
Radicals      830
Ralston, Anthony      537 575 576
Ramsey theory      305
Ramsey, Frank Plumpton      305
Random variable      175—184 209 296 428 430
Random walk      506
Randomly generated numbers      689
RANGE      175 253 392 393
Rank      559 819
Rate of a code      764 778 see
Ratio Test      429
Rational number exponent      A-2
Rational numbers      133 194 A-30
Reachability      338
Reachable state      330
Reactor      486
Read, R.C.      566 571 574 576 796 797
Real numbers      133 139 194 A-27 A-28 A-30
Real-valued function      99
Rear (of a list)      598 599
Rearrangement      749
Reasoning system      86
Rebman, Kenneth R.      304 305
Received word      762 763 777 see
Record      694
Recurrence relations      447—510
Recurrence relations, analysis of algorithms      473
Recurrence relations, associated homogeneous relation      471—473 479 480
Recurrence relations, boundary conditions      448
Recurrence relations, characteristic equation      456
Recurrence relations, characteristic roots      456 468
Recurrence relations, constant coefficients      448
Recurrence relations, Fibonacci relation      457
Recurrence relations, first-order linear relation      448
Recurrence relations, general solution      456 468 471
Recurrence relations, geometric progression      447
Recurrence relations, homogeneous relation      448 450 456
Recurrence relations, initial condition      448 456
Recurrence relations, linear relation      449
Recurrence relations, linearly independent solutions      456 464
Recurrence relations, Maple code      477
Recurrence relations, method of generating functions      482—487
Recurrence relations, method of undetermined coefficients      471
Recurrence relations, nonhomogeneous relation      471 472
Recurrence relations, nonlinear relation      487—493
Recurrence relations, particular solution      471 475 479 482 487—493
Recurrence relations, second-order linear relations      456—468
Recurrence relations, system of recurrence relations      486 487
Recurrence relations, Table of particular solutions for the method of undetermined coefficients      479
Recurrence relations, variable coefficients      452
Recurrent event      506
Recursion      211
Recursive algorithm      453
Recursive algorithm for the Fibonacci numbers      477 478
Recursive construction      129 447 532 620
Recursive definition      210—218 251 255 282 312 317 447 594 A-1 A-26
Recursive function      259 453
recursive method      454
Recursive procedure      453 500 606 608
Recursive process      211—213 218 316
Recursively defined set      218 251 316
Reddy, M.R.      562 575
Redei, L.      559
Redfield, J. Howard      796 797
Reducible polynomial      807
Reductio ad absurdum      76 127
Redundant state      371 373
Reed, M.B.      574 576
Refinement (of a partition)      373
Reflections      750 781 782 788
Reflexive property (of a relation)      337—343 347 348 353 366—369 376 377 782 808
Regiments      819
Region      544
Regular graph      531
Reinelt, G.      562 576
Reingold, Edward Martin      506 508
Relation      211 247 250—256 271 282 303 337—378 513 737 780—783
Relation composition      344
Relation matrix      346—349
Relation, 1-equivalence      338
Relation, antisymmetric relation      340 341 347 348 353 357 358 376 377
Relation, associative law of composition      345
Relation, binary relation      250 337
Relation, composite relation      344
Relation, converse of a relation      282
Relation, definition of a relation      250
Relation, divides relation      339 737
Relation, equivalence relation      337 342 343 353 366—378
Relation, equivalent states      338 371
Relation, first level of reachability      338
Relation, irreflexive relation      344
Relation, k-equivalent states      338 371 372
Relation, modulo n relation      337
Relation, partial order      337 341—343
Relation, partial ordering relation      341 357
Relation, poset      357—364
Relation, powers of a relation      345
Relation, reachability      338
Relation, reflexive relation      337—343 366—369
Relation, relation composition      344
Relation, relation matrix      346—349
Relation, second level of reachability      338
Relation, subset relation      250 340 358 359
Relation, symmetric relation      339—343
Relation, transitive relation      339—343
Relation, zero-one matrix      344 347
Relational data base      271 272 305
Relative complement      138
Relative frequency      158 159
Relatively prime integers      232—234 236 240 394 470
Relatively prime polynomials      808
Relativity theory      707
Remainder      223—226 234 274 276 686 689 693 804 805 810
Remainder theorem      804 805
Rencontre      403
Renyi, A.      587
Repeated real roots      467
Repetition      7 26 27 41 125 149
replacement      92 96 106 114 115 124
Replication number      825
Representation Theorem for a finite Boolean algebra      738—741 743
Resek, Diane      119 120
Reset      321
Residue arithmetic      704
Resolution      86 119
Resolvent      86
Restriction of a function      257
Retransmission      765 769
Reversal function      318
Reversal of a string      317 319
Reverse order      620
Ribet, Kenneth      706
Right branch      488
Right child      590 594 610 611
Right children      594 595
Right coset      757
Right subtree      592 594—596
Right-cancellation property (in a group)      747
Rigid motions of a cube      791
Rigid motions of a regular hexagon      788
Rigid motions of a regular tetrahedron      792 793
Rigid motions of a square      750 780
Rigid motions of an equilateral triangle      749 750
Rinaldi, G.      562 576
Ring      673 674
Ring homomorphism      697—700 706
Ring isomorphism      697—704
Ring of matrices      674 705
Ring of polynomials      799 801
Ring theory      673—709
Ring theory, $\mathbb{Z}_n$      686
Ring theory, Boolean ring      709
Ring theory, cancellation law of multiplication      678 681
Ring theory, cancellation laws of addition      680
Ring theory, center of a ring      709
Ring theory, characteristic      812
Ring theory, commutative ring      675
1 2 3 4 5 6 7 8 9 10 11 12 13
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2024
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте