Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear operators. Part 2

Авторы: Dunford N., Schwartz J., Bade W.G.

Аннотация:

In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V ↦ W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, or an endomorphism of V. Sometimes the definition of a linear function coincides with that of a linear map, while in analytic geometry it does not.
A linear map always maps linear subspaces to linear subspaces (possibly of a lower dimension); for instance it maps a plane through the origin to a plane, straight line or point.
In the language of abstract algebra, a linear map is a homomorphism of modules. In the language of category theory it is a morphism in the category of modules over a given ring.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 986

Добавлена в каталог: 18.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Oxtoby, J.C.      722 728 722 1152
Pais, A.      1568
Paley, R.E.A.C.      405 406 541 1177 1181 1264
Parallelogram, identity      (249)
Parker, W.V.      1080
Partial isometry, definition      XII.7.4 (1248)
Partially ordered set, bounds in      I.2.3 (4)
Partially ordered set, completely ordered      I.3.9 (8)
Partially ordered set, definition      I.2.1 (4)
Partially ordered set, directed set      I.7.1 (26)
Partially ordered set, fundamental theorem on      I.2.5 (5)
Partially ordered set, study of      I.2
Partially ordered set, totally ordered      I.2.2 (4)
Partially ordered set, well ordered      I.2.8 (7)
Peano, G.      1588
Peck, J.E.L.      471 474
Periodic function (almost periodic function), definition      IV.2.25 (242)
Periodic function (almost periodic function), multiply      IV.14.68 (367)
Periodic function (almost periodic function), study of      IV.7
Perron, O.      1078
Perturbation of bounded linear operators, remarks on      (611—612)
Perturbation of bounded linear operators, study of      VII.6 VII.8.1—2 VII.8.4—5
Perturbation of infinitesimal generator of a semi-group      (680—689)
Peter — Weyl theorem      XI.1.4 (940)
Peter, F.      940 1145
Pettis, B.J.      81 83—84 88 232 235 313 387 391 473 540—541 543
Phillips' perturbation theorem      VIII.1.19 (631)
Phillips' perturbation theorem, Hille — Yosida — Phillips' theorem      VIII.1.13 (624)
Phillips, R.S.      233 234—235 373 388 390 398 395 462 463 466 541 548 553—554 612 624 726—728 729 888 1274
Phragmen, E.      1043 1115
Pick, G.      1080
Picone, M.      1588 1562
Pierce, R.      395
Pincherle, S.      80
Pinsker, A.G.      395
Pitt, H.R.      729
Plancherel theorem      XI.8.9 (963) XI.3.20
Plancherel, M.      963
Plessner, A.I.      922 1269 1274
Poincare, H.      607
Pointwise ergodic theorems, k-parameter continuous case in $L_{1}$      VIII.7.17 (708)
Pointwise ergodic theorems, k-parameter continuous case in $L_{p}, 1<p<infty$,      VIII.7.10 (694)
Pointwise ergodic theorems, k-parameter discrete case      VIII.6.9 (679)
Pointwise ergodic theorems, one-parameter continuous case      VIII.7.5 (690)
Pointwise ergodic theorems, one-parameter discrete case      VIII.6.6 (675)
Pointwise ergodic theorems, remarks on      (729—730)
Pointwise Fubini — Jessen theorem      III.11.27 (209)
Poisson summability      IV.14.47 (363)
Poisson, S.D.      863
Polar decomposition of an operator      X.9 (935)
Pole, of an analytic function      (229)
Pole, of an operator, criteria for      VII.3.18 (573) VII.3.20
Pole, of an operator, definition      VII.3.15 (571)
Pollard, H.      728 1161 1265
Polynomial in an operator, characteristic      VII.2.1 (561) VII.5.17 VII.10.8
Polynomial in an operator, in a finite dimensional space      VII.1.1 (556)
Polynomial in an operator, in a general space      VII.3.10 (568) VII.5.17
Polynomial of an unbounded closed operator      VII.9.6—10 (602—604)
Pontrjagin, L.      47 79 1145 1157 1158 1160
Poole, E.G.C.      1433 1503
Positive definite operator, definition      X.4.1 (906)
POVZNER, A.      1587 1626
Preparation theorem of Weierstrass      (232)
Price, G.B.      232—233
Principal value integral, definition      XI.7.1 (1050)
Product, Cartesian, of measure spaces      III.11 (235)
Product, cartesian, of sets      I.8.11 (9)
Product, Cartesian, of spaces      I.3
Product, Cartesian, topology      I.8.1 (32)
Product, Cartesian, Tychonoff theorem      I.8.5 (32)
Product, intersection of sets      (2)
Product, of B-spaces      (89—90)
Product, of operators      (87)
Product, scalar, in a Hilbert space      IV.2.26 (242)
Projection mapping in Cartesian products, continuity and openness      I.3.3. (82)
Projection mapping in Cartesian products, definition      I.3.14 (9)
Projection, and complements      (553)
Projection, and extensions      (554)
Projection, definition      (37) VI.3.1
Projection, exercises on      VI.9.16—25 (513—514) VI.9.27—29
Projection, natural order for      VI.3.4 (481)
Projection, orthogonal or perpendicular      IV.4.8 (250) (482)
Projection, study of      VI.3
Proper value, definition      (606)
Ptak, V.      84 466
Putnam, C.R.      934 935 1563 1587 1592 1599 1600 1610
Quasi-equicontinuity, and weak compactness      IV.6.14 (269) IV.6.29
Quasi-equicontinuity, for bounded functions      IV.6.28 (280)
Quasi-equicontinuity, for continuous functions      IV.6.13 (269)
Quasi-nilpotent operator, definition      VII.5.12 (581)
Quasi-uniform convergence, as a criterion for continuous limit      IV.6.11 (268)
Quasi-uniform convergence, definition      IV.6.10 (268)
Quasi-uniform convergence, properties      IV.6.12 (269) IV.6.30—31
Quigley, F.D.      385
Quotient, group      (35) see
Quotient, of B-algebras      IX.1 (866)
Quotient, space      (38)
Rabinovic, Yu.L.      612
Radicals in B-algebras      IX.2.5 (869)
Radius, spectral      VII.3.5 (567)
Radon measure, definition      (142)
Radon — Nikodym theorem, counterexample      III.13.2 (222)
Radon — Nikodym theorem, for bounded additive set functions      IV.9.14 (815)
Radon — Nikodym theorem, general case      III.10.7 (181)
Radon — Nikodym theorem, positive case      III.10.2 (176)
Radon — Nikodym theorem, remarks on      (234)
Radon, J.      142 176 181—182 234 380 388 392 539 543
Raikov, D.A.      1152 1160 1274
Ramaswami, V.      884
Range of an operator      VI.2.8 (479)
Range of an operator, closed, criterion for      VII.4.1 (577)
Range of an operator, closed, criterion for, study of      VI.6 VI.9.15 VI.9.17
Range of an operator, remarks on      (539)
Rapoport, I.M.      1587
Rasevskii, P.K.      1149
Rayleigh equation      X.4 (907)
Rayleigh, Lord      611 907 928
Real numbers, extended      (3)
Real numbers, topology      (11)
Real part, of a complex number      (4)
Real vector apace      (38) (49)
Rectifiable curve      (225)
Reflexivity, alternate proof      V.7.11 (436)
Reflexivity, criterion for      V.4.7 (425)
Reflexivity, definition      II.3.22 (66)
Reflexivity, discussion      (88)
Reflexivity, examples of reflexive space      IV.15
Reflexivity, properties      II.3.23—24 (67) II.8.28—29
Reflexivity, remarks on      (463) (473)
Regular B-space      see "Reflexivity"
Regular closure      (462—463)
Regular convexity      (462—463)
Regular element in a B-algebra      IX.1.2 (861)
Regular element in a ring      (40)
Regular method of summability      II.4.35 (75)
Regular point of a differential equation      XIII.6 (1432)
Regular set function      see also "Set function"
Regular set function, additional properties      III.9.19—22 (170)
Regular set function, countable additivity and regularity      III.5.13 (188)
Regular set function, definition      III.5.11 (187)
Regular set function, extension of      III.5.14 (138)
Regular set function, products of      III.13.7 (223)
Regular set function, regularity of variations      III.5.12 (187)
Regular set function, vector-valued measure      IV.13.75 (350)
Regular singularity of a differential equation      XIII.6 (1432) XIII.6
Regular topological space, completely regular      VI.6.21—22 (276)
Regular topological space, definition      I.5.1 (15)
Regular topological space, normality of, with countable base      (24)
Reid, W.T.      938
Relative topology, definition      I.4.12 (12)
Rellich, F.      372 373 611—612 927 929 1263 1592 1593 1604
Representation, as a space of continuous functions      IV.6.13—22 (274—276) IV.7.6 (394—397)
Representation, as a space of integrable functions      (394—396)
Representation, for Boolean algebras      (44)
Representation, for Boolean rings with unit      I.12.1 (41)
Representation, for conjugate spaces      IV.15
Representation, for unitary groups of operators      XII.6.1 (1243)
Representation, for vector-valued integrals      III.11.17 (198)
Representation, of a vector-valued function      (196)
Representation, of finitely additive set functions      IV.9.10—11 (312) IV.9.13
Representation, of operators, in $L_{1}$      VI.8 (540—541)
Representation, of operators, in C      VI.7 (539—540)
Representation, of operators, in other spaces      (542—552)
Resolution of the identity      X.1 (889)
Resolution of the identity, for a normal operator      X.2.5 (898)
Resolution of the identity, for an unbounded operator      XII.2.4 (1196)
Resolution of the identity, formula for      X.6.1 (920) XII.2.10
Resolvent, definition      VII.3.1 (566)
Resolvent, equation      VII.3.6 (566)
Resolvent, of an element in a B-algebra      IX.1.2 (861)
Resolvent, set      VII.3.1 (566)
Resolvent, set of an element in a B-algebra      IX.1.2 (861)
Resolvent, study of      VII.3
Rickart, C.E.      233 234 541 543 883 886
Riemann, B.      1508 1592
Riesz convexity theorem      VI.10 VI.10.11
Riesz convexity theorem, applications and extensions      VI.11
Riesz convexity theorem, inequality of      XI.1.8 (1059)
Riesz convexity theorem, remarks on      (541—542)
Riesz, F.      79 80—81 85—86 88 265 372—373 380 387 388 392 395 538 539 606 608 609 659 728—729 926 927 928 929 933 935 1268 1269 1272 1273 1274
Riesz, M.      388 525 532 541 1059 1164
Rinehart, R.F.      607
Ring (algebraic), Boolean      (40)
Ring (algebraic), definition      (35)
Ring (algebraic), properties      (40—44)
Ring (algebraic), study of      I.11—12
Riss, J.      1161
Ritz, W.      928
Roberts, B.D.      93
Rogers, C.A.      93
Rohlin, V.A.      929 1269
Rosenblatt, M.      406
Rosenbloom, P.C.      47 612
Rosenfeld, N.S.      1614 1615
Rosenthal, A.      232 234—235 390
Rosser, J.B.      47—48
Rota, extension theory of      XIII.10.F (1612)
Rota, G.C.      1612
Rotational invariance      (402—403)
Rotho, E.H.      92 470
Rubin, H.      393
Rudin, W.      385
Ruston, A.F.      473 610
Rutickii, Ya.B.      400
Rutman, M.      94 395 466
Rutovitz, D.      1616 1621
Ryll-Nardzewski, C.      683 724 729
Saks decomposition, of a measure space      IV.9.7 (308)
Saks, S.      80 82 158 232 233—235 308 380 390 392 462 720
Salem, R.      542
San Juan, R.      387
Sargent, W.L.C.      81 400
Scalar product in a Hilbert space      IV.2.26 (242)
Scalars      (36)
Schaffer, J.J.      931 932 933 934
Schafke, F.W.      94 612
Schatten, R.      90 1163
Schauder, J.      83 84 93—94 456 470 485 539 609
Schmidt, E.      79 88 532 609 1087 1260 1269 1584 1590
Schoenberg, I.J.      380 393—394 728 1274
Schreiber, M.      932
Schreier, O.      79 462
Schroder, J.      612
Schrodinger, E.      611 1585
Schur, I.      532
Schur, J.      77 388
Schwartz, H.M.      391
Schwartz, J.T.      375 387 389 392 540 543 612 1269 1588
Schwartz, L.      82 84 399 401 402 466 611 1161 1162 1645
Schwarz inequality      IV.4.1 (248)
Schwarz, H.A.      248 372
Schwerdtfeger, H.      606
Sears, D.B.      1590 1591 1597 1604 1607 1616 1619
Sebastiao e Silva, J.      235 399
Segal, I.E.      384 727 928 929 1160 1161 1269
Seidel, P.L.      383
Seitz, F.      1592
Self adjoint operator      X.4.1 (906)
Self adjoint subspace      XII.4.14 (1230)
Semi-bounded operators, definition      XII.5.1 (1240)
Semi-group of operators, definition      VIII.1.1 (614)
Semi-group of operators, infinitesimal generator of      VIII.1.6 (619)
Semi-group of operators, k-parameter      VIII.7.8 (693)
Semi-group of operators, perturbation theory of      (630—639)
Semi-group of operators, strongly continuous      (685)
Semi-group of operators, strongly measurable      (685)
Semi-group of operators, study of      VIII.1—3
Semi-simple B-algebra      IX.2.5 (869)
Semi-variation of a vector-valued measure, definition      IV.10.3 (320)
Semi-variation of a vector-valued measure, properties      IV.10.4 (320)
Separability and compact sets      V.7.15—16 (437)
Separability and compact sets, criterion for      V.7.36 (438)
Separability and compact sets, of C      V.7.17 (437)
Separability and embedding      V.7.12 (436) V.7.14
Separability and metrizability      V.5.1—2 (426)
Separable linear manifolds      II.1.5 (50) see
Separable linear manifolds, in $L_{p}$      III.8.5 (168) III.9.6
Separable linear manifolds, in C      IV.13.16 (340)
Separable sets      I.6.11 (21) see
Separably-valued      III.1.11 (100)
Separation of convex sets, counter examples      V.7.25—28 (437)
Separation of convex sets, in finite dimensional spaces      V.7.24 (437)
Separation of convex sets, in linear spaces      V.1.12 (412)
Separation of convex sets, in linear topological spaces      V.2.7—13 (417—418)
SEQUENCE      see also "Convergence"
Sequence, Cauchy      I.6.5 (19)
Sequence, Cauchy, generalized      I.7.4 (28)
Sequence, Cauchy, weak      II.3.25 (67)
Sequence, convergent      I.6.5 (19)
Sequence, definitions      IV.2.4—11 (239—240) IV.2.28
Sequence, definitions, properties      IV. 15
Sequence, factor      (366)
Sequence, generalized      I.7.1 (26)
Sequence, generalized, generated by an ultrafilter      (280)
Sequence, of sets, non-increasing and limits of      III.4.3 (126)
Sequential compactness, definition      1.6.10 (21)
Sequential compactness, relations with other compactness in metric spaces      I.6.13 (21) 1.6.15
Sequential compactness, weak, definition      II.3.25 (67)
Sequential compactness, weak, in reflexive spaces      II.3.28 (68)
Sequential compactness, weak, in special spaces      IV. 15
Series      see also "Convergence"
Series, lacunary      IV.14.63 (366)
Series, orthogonal      IV.14
Series, summability of      II.4.31—54 (74—78)
Set function, $\sigma$-finite      III.5.7 (136)
Set function, additive      III.1.2 (96)
Set function, bounded variation of      III.1.4 (97)
Set function, continuity of      III.4.12 (131) III.10
Set function, convergence of      III.7.2—4 (158—160) IV.9 IV.15
Set function, countable additive      III.4.1 (126)
Set function, countable additive, study of      III.4
Set function, decomposition of      III.1.8 (98) III.4.7—14 (233)
Set function, definition      III.1.1 (85)
Set function, differentiation of      III.12
Set function, extensions of      III.5
Set function, extensions of, non-uniqueness of      III.9.12 (169)
Set function, extensions of, to a $\sigma$-field      III.5
Set function, extensions of, to arbitrary sets      III.1.9—10 (99—100)
Set function, measure      III.4.3 (126)
Set function, positive      III.1.1 (95)
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте