Авторизация
Поиск по указателям
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Linear operators. Part 2
Авторы: Dunford N., Schwartz J., Bade W.G.
Аннотация: In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V ↦ W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, or an endomorphism of V. Sometimes the definition of a linear function coincides with that of a linear map, while in analytic geometry it does not.
A linear map always maps linear subspaces to linear subspaces (possibly of a lower dimension); for instance it maps a plane through the origin to a plane, straight line or point.
In the language of abstract algebra, a linear map is a homomorphism of modules. In the language of category theory it is a morphism in the category of modules over a given ring.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1963
Количество страниц: 986
Добавлена в каталог: 18.02.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Dominated ergodic theorem, k-parameter discrete case VIII.6.9 (679)
Dominated ergodic theorem, one-parameter continuous case VIII.7.7 (698)
Dominated ergodic theorem, one-parameter discrete case VIII.6.8 (678)
Dominated ergodic theorem, remarks on (729)
Doob, J.L. 729—730 927 929
Dorodnicyn, A.A. 1587
Double norm, definition XI.6.1 (1010)
Dual group, definition XI.3.13 (968)
Dual space (or conjugate space), definition II.3.7 (61)
Dubrovskii, V.M. 389
Duffin, R.J. 1265
Dugundji, J. 470
Dunford, N. 82 84 93 232 235 384 387 389 392 462 540—541 543 554 606 609 612 724 727 729—730 927
Dunham, J.L.. 1592
Dvoretsky, A. 83
Eachus, J.J. 1265
Eberlein — Smulian theorem on weak compactness V.6.1 (430)
Eberlein — Smulian theorem on weak compactness, remarks on (466)
Eberlein, W.F. 88 386 430 463 466 729 927 1273
Edwards, R.E. 381 884
Egoroff theorem, on almost everywhere and -uniform convergence III.6.12 (149)
Egoroff, D.T. 149
Eidelheit, M. 91 460
Eigenvalue, definition VII.1.2 (556) VII.11 X.8.1
Eigenvector, definition VII.1.2 (556) X.3.1
Eilenberg, S. 385 397
Elconin, V. 92
Ellis, D. 394
Ellis, H.W. 400
Embedding, natural, of a B-space into its second conjugate II.3.18 (66)
End point of an interval III.5.15 (140)
End point of an interval, fixed XIII.1 (1279)
End point of an interval, free XIII.1 (1279)
Entire function, definition (231)
Entire function, Liouville's theorem on (231)
Equicontinuity, and compactness IV.5.6 (260) IV.6.7—9
Equicontinuity, definition IV.6.6 (268)
Equicontinuity, principle of II.1.11 (52)
Equicontinuity, quasi-equicontinuity, and compactness IV.6.14 (269) IV.6.29
Equicontinuity, quasi-equicontinuity, definition IV.6.13 (269) IV.6.28
Equicontinuons family of linear transformations, definition V.10.7 (456)
Equicontinuons family of linear transformations, fixed point of V.10.8 (457)
Equivalence of normed linear spaces, definition II.3.17 (65)
Equivalence, *-equivalence of B*-algebras IX.3.4 (875)
Erdoes, P. 384 407
Ergodic theorems VII.7 VII.8.8—10 VIII.4—8 see "Maximal "Mean "Pointwise "Uniform
Ergodic theorems, remarks on (728—730)
Esclangon, E. 1591
Essential least upper bound, definition III.1.11 (100—101)
Essential singularity, definition (229)
Essential spectrum of a dosed operator XIII.6.1 (1393)
Essential supremum, definition III.1.11 (100—101)
Essentially bounded, definition III.1.11 (100—101)
Essentially bounded, E- X.2 (899)
Essentially separably valued, definition III.1.11 (100—101)
Esser, M. 927
Euclidean space, definition IV.2.1 (238)
Euclidean space, further properties IV.15 (374)
Euclidean space, study of IV.3
Euler — Gauss, hypergeometric equation of XIII.8 (1509)
Euler, L. 1509 1510 1582
Extended real and complex numbers, definitions (3)
Extended real and complex numbers, topology of (11)
Extension of a function, by continuity I.6.17 (23)
Extension of a function, definition (3)
Extension of a function, Tietze's theorem I.5.3—4 (15—17)
Extension of measures, Lebesgue III.5.17—18 (142—143)
Extension of measures, to a -field III.5
Extension of measures, to arbitrary sets III.1.9—10 (99—100)
Extensions of linear operators VI.2.5 (478) (554)
Extremal point and subset, definitions V.8.1 (439)
Extremal point and subset, examples and properties V.11.1—6 (457—458)
Extremal point and subset, remarks on (466) (473)
Extremal point and subset, study of V.8
Extremally disconnected (398)
Ezrohi, I.A. 543
F-space basic properties II.1—2
F-space definition II.1.10 (51)
F-space examples of IV.2.27—28 (243)
Factor group, definition (85)
Factor sequence (366)
Factor space, in F- and B-spaces, definition II.4.13 (71)
Factor space, in F- and B-spaces, properties II.4.13—20 (71—72)
Factor space, in F- and B-spaces, remarks on (88)
Factor space, in vector spaces (38)
Fagan, R.E. 406
Fage, M.K. 1587 1589
Fan, K. 395 397 610
Fantappie, L. 399 607
Farnell, A.B. 1163
Fatou theorem, on limits and integrals III.6.19 (152) III.9.35
Fatou, P. 152
Fell, J.M.G. 927
Feller, W. 727 1589 1628
Fenchel, W. 471
Feynman, R.P. 406
Fichtenholz, G. 83 233 373 386 388 543
Ficken, F.A. 393 394
Field, -field III.4.2 (126) III.5.6
Field, definition III.1.3 (96)
Field, determined by a collection of sets III.5.6 (135)
Field, in algebraic sense (33)
Field, Lebesgue extension of a -field III.5.18 (143)
Field, of subsets of a set, Bord field III.5.10 (137)
Field, restriction of a set function to (166)
Filter, definition and properties I.7.10—12 (30—31)
Finite dimensional function on a group, definition XI.1.3 (940)
Finite dimensional spaces, additional properties IV.15 (374)
Finite dimensional spaces, definitions IV.2.1—3 (238—239)
Finite dimensional spaces, study of IV.3
Finite intersection property, as criterion for compactness I.5.6 (17)
Finite intersection property, definition I.5.5 (17)
Finite measure(space), -finite measure III.5.7 (136) see "Measure
Finite measure(space), criterion for and properties III.4.4—9 (127—129)
Finite measure(space), definition III.4.3 (126)
Finite measure(space), Saks decomposition of IV.9.7 (308)
Finitely additive set function see also "Set function"
Finitely additive set function, definition III.1.2 (96)
Finitely additive set function, study of III.1—3
Fischer, C.A. 380 539 543
Fischer, E. 373
Fixed point property, definition V.10.1 (453)
Fixed point property, exercises V.11.17—23 (459—460)
Fixed point property, remarks on (467—470) (474)
Fixed point property, theorems V.10
Fleischer, I. 88 400
Foias, C. 1267 1268
Folner, E. 399
Fort, M.K. 471
Fortet, R. 93 406 473
Fourier coefficients, definition IV.14.12 (358)
Fourier series, convergence of IV.14.27 (360) IV.14.29—33
Fourier series, definition IV.14.12 (358)
Fourier series, localization of IV.14.26 (360)
Fourier series, multiple series IV.14.68 (367)
Fourier series, multiple series, study of, IV.14.69-73 (367—368)
Fourier series, study of IV. 14 IV.14.12—20
Fourier sine and cosine theorems XIII.5 (1388)
Fourier, J.B.J. 1388
Frechet differential, definition (92)
Frechet differential, theory for compact operators VII.4
Frechet, M. 79 233 373 380 382 387—888 398 780
Fredholm alternative (609—610)
Fredholm, I. 79 609 1085
Freudenthal, H. 84 394 395 1273
Friedrichs, K.O. 401 405 407 612 927 1184 1240 1273 1501 1545 1546 1585 1586 1591 1592 1604 1635 1748 1749
Frink, O. 94
Frobenius, G. 607 1080 1147
Fubini theorem, for general finite measure spaces III.11.18 (193)
Fubini theorem, for positive -finite measure spaces III.11.9 (190)
Fubini — Jessen theorems, mean III.11.24 (207)
Fubini — Jessen theorems, pointwise III.11.27 (209)
Fubini, G. 190 207 209
Fuchs, L. 1588
Fuglede, B. 934
Fukamiya, M. 466 729 884
Fullerton, R.E. 396 397 540 543 552
Function, absolutely continuous IV.2.22 (242)
Function, Additive set see "Set function"
Function, almost periodic IV.2.25 (242) IV.7
Function, analytic III.14
Function, analytic, between complex vector spaces VI.10.5 (522)
Function, Borel — Stieltjes measure of III.5.17 (142)
Function, characteristic (8)
Function, continuous I.4.15 (13)
Function, convex VI.10.1 (520)
Function, definition (3)
Function, domain of (2—3)
Function, entire (231)
Function, essential bound or supremum of III.1.11 (100)
Function, extension of (3)
Function, homeomorphism I.4.15 (13)
Function, homomorphism (35) (39) (40) (44)
Function, integrate III.2.17 (112) IV.10.7
Function, inverse (3)
Function, isometry II.3.17 (65)
Function, isomorphism (85) (88) (39)
Function, linear functional (38)
Function, linear operator (86)
Function, measurable III.1.10 (106) III.2.22 (323)
Function, metric I.6.1 (18)
Function, null III.2.3 (103)
Function, of an operator see "Calculus"
Function, of bounded variation III.5.15 (140)
Function, one-to-one (3)
Function, operator (36)
Function, orthonormal system of IV.14.1 (357)
Function, projection I.3.14 (9) (37) IV.4.8
Function, range of (3)
Function, representation of vector valued III.11.15 (194)
Function, resolvent VII.3.1 (566)
Function, restriction of (3)
Function, set III.1.1 (95)
Function, simple III.2.9 (105) (322)
Function, subadditive (618)
Function, support V.1.7 (410)
Function, tangent V.9.2 (446)
Function, total variation of III.5.15 (140)
Function, totally measurable III.2.10 (106) see
Function, uniformly continuous I.6.16 (28)
Functional(s), bilinear II.4.4 (70)
Functional(s), continuous II.3.7 (61)
Functional(s), continuous, existence of II.3.12—14 (64—65)
Functional(s), continuous, extension of II.3.10—11 (62—63)
Functional(s), continuous, for representation in special spaces IV.15
Functional(s), continuous, non-existence of (329—330) (892)
Functional(s), discontinuous, existence of I.3.7 (8)
Functional(s), in bounded topology V.5.6 (428)
Functional(s), in weak and strong operator topologies VI.1.4 (477)
Functional(s), linear (38)
Functional(s), multiplicative IV.6.23 (277)
Functional(s), multiplicative, in the unit sphere of C* V.3.6 (441)
Functional(s), multiplicative, of V.8.9 (443)
Functional(s), separating V.1.9 (411)
Functional(s), tangent, V-9.4 (447)
Functional(s), total space of V.8.1 (418)
Functions, of an element in a B*-algebra IX.3.12 (878)
Functions, special XIII.9.1 (1569)
Fundamental family of neighborhoods, definition I.4.6 (10—11)
Fundamental set, in a linear topological space II.1.4 (50)
Gagaev, B. 93
Gal, I.S. 80 82
Gale, D. 382
Gantmacher, V. 463 485 539
Garabedian, P.R. 88
Garding, L. 1269 1634 1708 1716
Gauss, C.F. 1509
Gavurin, M.K. 612
Gelbaum, B.R. 64
Gelfand — Neumark theorem IX.3.7 (876)
Gelfand, I.M. 79 94 232 235 347 384 385 396 407 589 540 543 608 609 876 888 884 1149 1160 1587 1616 1622 1628 1624 1625
Generalized sequence, definition and properties I.7.1—7 (26—29)
Generator, infinitesimal of a semigroup of operators VIII.1.6 (619)
Gibbs, J.W. 657
Gillespie, D.C. 462
Giorgi, G. 607
Glazman, I.M. 926 927 929 1269 1270 1272 1273 1274 1587 1588 1589 1590 1591 1592 1599
Glicksberg, I. 381
Glivenko, V. 391
Godement, R. 930 1160 1274
Goedel, K. 47—48
Gohberg, I.C. 610 611 1163
Gol'dman, M.A. 611
Goldstine, H.H. 81 424 463
Gomes, A.P. 399
Goodner, D.B. 398 554
Gowurin, M. 233 391 543 552
Graph, closed graph theorem II.2.4 (57)
Graph, of an operator II.2.8 (57)
Graves, L.M. 48 85 92 232 235 383 391 467 611
Graves, R.F. 406
Graves, R.L. 610
Green's formula XIII.2.4 (1288)
Green, G. 1288
Grimshaw, M.E. 606
Grinblyum, M.M. 94
Grosbeig, Y. 392
Grosberg, J. 395
Grothendieck, A. 9O 383 389 398 399 466 540 543 552 553 610
Group, basic properties I.10
Group, definition (84)
Group, metrizable (90)
Group, representations (1145—1149)
Group, topological II.1.1 (49)
Gurevic, L.A. 94
Haar measure on a compact group V.11.22—28 (460) XI.1.1
Haar measure on a compact group, definition XI.1.2 (940)
Haar measure on a compact group, in a locally compact group XI.8 (950)
Haar measure on a compact group, in a locally compact group, properties of XI.11 (1150—1155)
Haar, A. 927 1147 1152 1583 1616 1617
Hadamard three circles theorem VI.11.48 (538)
Hadamard's inequality XI.6.12 (1018)
Hadamard, J. 380 538 1018
Hahn decomposition theorem III.4.10 (129)
Hahn extension theorem III.5.8 (136)
Hahn — Banach theorem II.3.10 (62)
Hahn — Banach theorem, discussion of (85—88)
Hahn, H. 48 62 80 85 86 88 129 133 158 232 233 234—235 390 539 928 1269
Halberg, C.J.A., Jr. 1087
Halmos, P.R. 48 80 232 235 381 389 390 606 608 722 728 729 926 927 928 929 931 932 933 934 1152 1269
Halperin, I. 400 473 1586 1588 1591
Hamburger moment problem XII.8.1 (1251)
Hamburger, H.L. 606 611 1250 1251
Hamel base or basis, definition (36)
Hamel base or basis, for general vector spaces I.14.2 (46)
Hamel base or basis, for real numbers I.3.7 (8)
Hankel transform XI.8.23 (978) (1535)
Hankel, H. 1348 1349 1535
Hanson, E.H. 392
Harazov, D.F. 611
Hardy — Hilbert type inequalities VI.11.19—29 (531—584)
Hardy, G.H. 78 864 531—533 538 541 713 1004 1006 1007 1076 1183 1184 1591
Hartman, P. 399 729 1551 1553 1555 1556 1558 1559 1560 1561 1562 1585 1587 1590 1591 1592 1596 1597 1598 1599 1600 1601 1602 1603 1605 1606 1607 1614 1615 1616 1626
Hatfield, C. 406
Hausdorff -measure III.9.47 (174)
Hausdorff maximality theorem I.2.6 (6)
Hausdorff space, criterion for I.7.3 (27)
Hausdorff space, definition I.5.1 (15)
Hausdorff, F. 6 47—48 79 89 174 380 529 539 1250
Heaviside, O. 1648
Реклама