Главная    Ex Libris    Книги    Журналы    Статьи    Серии    Каталог    Wanted    Загрузка    ХудЛит    Справка    Поиск по индексам    Поиск    Форум   
blank
Авторизация

       
blank
Поиск по указателям

blank
blank
blank
Красота
blank
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2



Обсудите книгу на научном форуме



Нашли опечатку?
Выделите ее мышкой и нажмите Ctrl+Enter


Название: Linear operators. Part 2

Авторы: Dunford N., Schwartz J., Bade W.G.

Аннотация:

In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V ↦ W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, or an endomorphism of V. Sometimes the definition of a linear function coincides with that of a linear map, while in analytic geometry it does not.
A linear map always maps linear subspaces to linear subspaces (possibly of a lower dimension); for instance it maps a plane through the origin to a plane, straight line or point.
In the language of abstract algebra, a linear map is a homomorphism of modules. In the language of category theory it is a morphism in the category of modules over a given ring.


Язык: en

Рубрика: Математика/

Статус предметного указателя: Готов указатель с номерами страниц

ed2k: ed2k stats

Год издания: 1963

Количество страниц: 986

Добавлена в каталог: 18.02.2014

Операции: Положить на полку | Скопировать ссылку для форума | Скопировать ID
blank
Предметный указатель
Dominated ergodic theorem, k-parameter discrete case      VIII.6.9 (679)
Dominated ergodic theorem, one-parameter continuous case      VIII.7.7 (698)
Dominated ergodic theorem, one-parameter discrete case      VIII.6.8 (678)
Dominated ergodic theorem, remarks on      (729)
Doob, J.L.      729—730 927 929
Dorodnicyn, A.A.      1587
Double norm, definition      XI.6.1 (1010)
Dual group, definition      XI.3.13 (968)
Dual space (or conjugate space), definition      II.3.7 (61)
Dubrovskii, V.M.      389
Duffin, R.J.      1265
Dugundji, J.      470
Dunford, N.      82 84 93 232 235 384 387 389 392 462 540—541 543 554 606 609 612 724 727 729—730 927
Dunham, J.L..      1592
Dvoretsky, A.      83
Eachus, J.J.      1265
Eberlein — Smulian theorem on weak compactness      V.6.1 (430)
Eberlein — Smulian theorem on weak compactness, remarks on      (466)
Eberlein, W.F.      88 386 430 463 466 729 927 1273
Edwards, R.E.      381 884
Egoroff theorem, on almost everywhere and $\mu$-uniform convergence      III.6.12 (149)
Egoroff, D.T.      149
Eidelheit, M.      91 460
Eigenvalue, definition      VII.1.2 (556) VII.11 X.8.1
Eigenvector, definition      VII.1.2 (556) X.3.1
Eilenberg, S.      385 397
Elconin, V.      92
Ellis, D.      394
Ellis, H.W.      400
Embedding, natural, of a B-space into its second conjugate      II.3.18 (66)
End point of an interval      III.5.15 (140)
End point of an interval, fixed      XIII.1 (1279)
End point of an interval, free      XIII.1 (1279)
Entire function, definition      (231)
Entire function, Liouville's theorem on      (231)
Equicontinuity, and compactness      IV.5.6 (260) IV.6.7—9
Equicontinuity, definition      IV.6.6 (268)
Equicontinuity, principle of      II.1.11 (52)
Equicontinuity, quasi-equicontinuity, and compactness      IV.6.14 (269) IV.6.29
Equicontinuity, quasi-equicontinuity, definition      IV.6.13 (269) IV.6.28
Equicontinuons family of linear transformations, definition      V.10.7 (456)
Equicontinuons family of linear transformations, fixed point of      V.10.8 (457)
Equivalence of normed linear spaces, definition      II.3.17 (65)
Equivalence, *-equivalence of B*-algebras      IX.3.4 (875)
Erdoes, P.      384 407
Ergodic theorems      VII.7 VII.8.8—10 VIII.4—8 see "Maximal "Mean "Pointwise "Uniform
Ergodic theorems, remarks on      (728—730)
Esclangon, E.      1591
Essential least upper bound, definition      III.1.11 (100—101)
Essential singularity, definition      (229)
Essential spectrum of a dosed operator      XIII.6.1 (1393)
Essential supremum, definition      III.1.11 (100—101)
Essentially bounded, definition      III.1.11 (100—101)
Essentially bounded, E-      X.2 (899)
Essentially separably valued, definition      III.1.11 (100—101)
Esser, M.      927
Euclidean space, definition      IV.2.1 (238)
Euclidean space, further properties      IV.15 (374)
Euclidean space, study of      IV.3
Euler — Gauss, hypergeometric equation of      XIII.8 (1509)
Euler, L.      1509 1510 1582
Extended real and complex numbers, definitions      (3)
Extended real and complex numbers, topology of      (11)
Extension of a function, by continuity      I.6.17 (23)
Extension of a function, definition      (3)
Extension of a function, Tietze's theorem      I.5.3—4 (15—17)
Extension of measures, Lebesgue      III.5.17—18 (142—143)
Extension of measures, to a $\sigma$-field      III.5
Extension of measures, to arbitrary sets      III.1.9—10 (99—100)
Extensions of linear operators      VI.2.5 (478) (554)
Extremal point and subset, definitions      V.8.1 (439)
Extremal point and subset, examples and properties      V.11.1—6 (457—458)
Extremal point and subset, remarks on      (466) (473)
Extremal point and subset, study of      V.8
Extremally disconnected      (398)
Ezrohi, I.A.      543
F-space basic properties      II.1—2
F-space definition      II.1.10 (51)
F-space examples of      IV.2.27—28 (243)
Factor group, definition      (85)
Factor sequence      (366)
Factor space, in F- and B-spaces, definition      II.4.13 (71)
Factor space, in F- and B-spaces, properties      II.4.13—20 (71—72)
Factor space, in F- and B-spaces, remarks on      (88)
Factor space, in vector spaces      (38)
Fagan, R.E.      406
Fage, M.K.      1587 1589
Fan, K.      395 397 610
Fantappie, L.      399 607
Farnell, A.B.      1163
Fatou theorem, on limits and integrals      III.6.19 (152) III.9.35
Fatou, P.      152
Fell, J.M.G.      927
Feller, W.      727 1589 1628
Fenchel, W.      471
Feynman, R.P.      406
Fichtenholz, G.      83 233 373 386 388 543
Ficken, F.A.      393 394
Field, $\sigma$-field      III.4.2 (126) III.5.6
Field, definition      III.1.3 (96)
Field, determined by a collection of sets      III.5.6 (135)
Field, in algebraic sense      (33)
Field, Lebesgue extension of a $\sigma$-field      III.5.18 (143)
Field, of subsets of a set, Bord field      III.5.10 (137)
Field, restriction of a set function to      (166)
Filter, definition and properties      I.7.10—12 (30—31)
Finite dimensional function on a group, definition      XI.1.3 (940)
Finite dimensional spaces, additional properties      IV.15 (374)
Finite dimensional spaces, definitions      IV.2.1—3 (238—239)
Finite dimensional spaces, study of      IV.3
Finite intersection property, as criterion for compactness      I.5.6 (17)
Finite intersection property, definition      I.5.5 (17)
Finite measure(space), $\sigma$-finite measure      III.5.7 (136) see "Measure
Finite measure(space), criterion for and properties      III.4.4—9 (127—129)
Finite measure(space), definition      III.4.3 (126)
Finite measure(space), Saks decomposition of      IV.9.7 (308)
Finitely additive set function      see also "Set function"
Finitely additive set function, definition      III.1.2 (96)
Finitely additive set function, study of      III.1—3
Fischer, C.A.      380 539 543
Fischer, E.      373
Fixed point property, definition      V.10.1 (453)
Fixed point property, exercises      V.11.17—23 (459—460)
Fixed point property, remarks on      (467—470) (474)
Fixed point property, theorems      V.10
Fleischer, I.      88 400
Foias, C.      1267 1268
Folner, E.      399
Fort, M.K.      471
Fortet, R.      93 406 473
Fourier coefficients, definition      IV.14.12 (358)
Fourier series, convergence of      IV.14.27 (360) IV.14.29—33
Fourier series, definition      IV.14.12 (358)
Fourier series, localization of      IV.14.26 (360)
Fourier series, multiple series      IV.14.68 (367)
Fourier series, multiple series, study of, IV.14.69-73      (367—368)
Fourier series, study of      IV. 14 IV.14.12—20
Fourier sine and cosine theorems      XIII.5 (1388)
Fourier, J.B.J.      1388
Frechet differential, definition      (92)
Frechet differential, theory for compact operators      VII.4
Frechet, M.      79 233 373 380 382 387—888 398 780
Fredholm alternative      (609—610)
Fredholm, I.      79 609 1085
Freudenthal, H.      84 394 395 1273
Friedrichs, K.O.      401 405 407 612 927 1184 1240 1273 1501 1545 1546 1585 1586 1591 1592 1604 1635 1748 1749
Frink, O.      94
Frobenius, G.      607 1080 1147
Fubini theorem, for general finite measure spaces      III.11.18 (193)
Fubini theorem, for positive $\sigma$-finite measure spaces      III.11.9 (190)
Fubini — Jessen theorems, mean      III.11.24 (207)
Fubini — Jessen theorems, pointwise      III.11.27 (209)
Fubini, G.      190 207 209
Fuchs, L.      1588
Fuglede, B.      934
Fukamiya, M.      466 729 884
Fullerton, R.E.      396 397 540 543 552
Function, absolutely continuous      IV.2.22 (242)
Function, Additive set      see "Set function"
Function, almost periodic      IV.2.25 (242) IV.7
Function, analytic      III.14
Function, analytic, between complex vector spaces      VI.10.5 (522)
Function, Borel — Stieltjes measure of      III.5.17 (142)
Function, characteristic      (8)
Function, continuous      I.4.15 (13)
Function, convex      VI.10.1 (520)
Function, definition      (3)
Function, domain of      (2—3)
Function, entire      (231)
Function, essential bound or supremum of      III.1.11 (100)
Function, extension of      (3)
Function, homeomorphism      I.4.15 (13)
Function, homomorphism      (35) (39) (40) (44)
Function, integrate      III.2.17 (112) IV.10.7
Function, inverse      (3)
Function, isometry      II.3.17 (65)
Function, isomorphism      (85) (88) (39)
Function, linear functional      (38)
Function, linear operator      (86)
Function, measurable      III.1.10 (106) III.2.22 (323)
Function, metric      I.6.1 (18)
Function, null      III.2.3 (103)
Function, of an operator      see "Calculus"
Function, of bounded variation      III.5.15 (140)
Function, one-to-one      (3)
Function, operator      (36)
Function, orthonormal system of      IV.14.1 (357)
Function, projection      I.3.14 (9) (37) IV.4.8
Function, range of      (3)
Function, representation of vector valued      III.11.15 (194)
Function, resolvent      VII.3.1 (566)
Function, restriction of      (3)
Function, set      III.1.1 (95)
Function, simple      III.2.9 (105) (322)
Function, subadditive      (618)
Function, support      V.1.7 (410)
Function, tangent      V.9.2 (446)
Function, total variation of      III.5.15 (140)
Function, totally measurable      III.2.10 (106) see
Function, uniformly continuous      I.6.16 (28)
Functional(s), bilinear      II.4.4 (70)
Functional(s), continuous      II.3.7 (61)
Functional(s), continuous, existence of      II.3.12—14 (64—65)
Functional(s), continuous, extension of      II.3.10—11 (62—63)
Functional(s), continuous, for representation in special spaces      IV.15
Functional(s), continuous, non-existence of      (329—330) (892)
Functional(s), discontinuous, existence of      I.3.7 (8)
Functional(s), in bounded $\mathfrak{X}$ topology      V.5.6 (428)
Functional(s), in weak and strong operator topologies      VI.1.4 (477)
Functional(s), linear      (38)
Functional(s), multiplicative      IV.6.23 (277)
Functional(s), multiplicative, in the unit sphere of C*      V.3.6 (441)
Functional(s), multiplicative, of $L_{\infty}$      V.8.9 (443)
Functional(s), separating      V.1.9 (411)
Functional(s), tangent, V-9.4      (447)
Functional(s), total space of      V.8.1 (418)
Functions, of an element in a B*-algebra      IX.3.12 (878)
Functions, special      XIII.9.1 (1569)
Fundamental family of neighborhoods, definition      I.4.6 (10—11)
Fundamental set, in a linear topological space      II.1.4 (50)
Gagaev, B.      93
Gal, I.S.      80 82
Gale, D.      382
Gantmacher, V.      463 485 539
Garabedian, P.R.      88
Garding, L.      1269 1634 1708 1716
Gauss, C.F.      1509
Gavurin, M.K.      612
Gelbaum, B.R.      64
Gelfand — Neumark theorem      IX.3.7 (876)
Gelfand, I.M.      79 94 232 235 347 384 385 396 407 589 540 543 608 609 876 888 884 1149 1160 1587 1616 1622 1628 1624 1625
Generalized sequence, definition and properties      I.7.1—7 (26—29)
Generator, infinitesimal of a semigroup of operators      VIII.1.6 (619)
Gibbs, J.W.      657
Gillespie, D.C.      462
Giorgi, G.      607
Glazman, I.M.      926 927 929 1269 1270 1272 1273 1274 1587 1588 1589 1590 1591 1592 1599
Glicksberg, I.      381
Glivenko, V.      391
Godement, R.      930 1160 1274
Goedel, K.      47—48
Gohberg, I.C.      610 611 1163
Gol'dman, M.A.      611
Goldstine, H.H.      81 424 463
Gomes, A.P.      399
Goodner, D.B.      398 554
Gowurin, M.      233 391 543 552
Graph, closed graph theorem      II.2.4 (57)
Graph, of an operator      II.2.8 (57)
Graves, L.M.      48 85 92 232 235 383 391 467 611
Graves, R.F.      406
Graves, R.L.      610
Green's formula      XIII.2.4 (1288)
Green, G.      1288
Grimshaw, M.E.      606
Grinblyum, M.M.      94
Grosbeig, Y.      392
Grosberg, J.      395
Grothendieck, A.      9O 383 389 398 399 466 540 543 552 553 610
Group, basic properties      I.10
Group, definition      (84)
Group, metrizable      (90)
Group, representations      (1145—1149)
Group, topological      II.1.1 (49)
Gurevic, L.A.      94
Haar measure on a compact group      V.11.22—28 (460) XI.1.1
Haar measure on a compact group, definition      XI.1.2 (940)
Haar measure on a compact group, in a locally compact group      XI.8 (950)
Haar measure on a compact group, in a locally compact group, properties of      XI.11 (1150—1155)
Haar, A.      927 1147 1152 1583 1616 1617
Hadamard three circles theorem      VI.11.48 (538)
Hadamard's inequality      XI.6.12 (1018)
Hadamard, J.      380 538 1018
Hahn decomposition theorem      III.4.10 (129)
Hahn extension theorem      III.5.8 (136)
Hahn — Banach theorem      II.3.10 (62)
Hahn — Banach theorem, discussion of      (85—88)
Hahn, H.      48 62 80 85 86 88 129 133 158 232 233 234—235 390 539 928 1269
Halberg, C.J.A., Jr.      1087
Halmos, P.R.      48 80 232 235 381 389 390 606 608 722 728 729 926 927 928 929 931 932 933 934 1152 1269
Halperin, I.      400 473 1586 1588 1591
Hamburger moment problem      XII.8.1 (1251)
Hamburger, H.L.      606 611 1250 1251
Hamel base or basis, definition      (36)
Hamel base or basis, for general vector spaces      I.14.2 (46)
Hamel base or basis, for real numbers      I.3.7 (8)
Hankel transform      XI.8.23 (978) (1535)
Hankel, H.      1348 1349 1535
Hanson, E.H.      392
Harazov, D.F.      611
Hardy — Hilbert type inequalities      VI.11.19—29 (531—584)
Hardy, G.H.      78 864 531—533 538 541 713 1004 1006 1007 1076 1183 1184 1591
Hartman, P.      399 729 1551 1553 1555 1556 1558 1559 1560 1561 1562 1585 1587 1590 1591 1592 1596 1597 1598 1599 1600 1601 1602 1603 1605 1606 1607 1614 1615 1616 1626
Hatfield, C.      406
Hausdorff $\alpha$-measure      III.9.47 (174)
Hausdorff maximality theorem      I.2.6 (6)
Hausdorff space, criterion for      I.7.3 (27)
Hausdorff space, definition      I.5.1 (15)
Hausdorff, F.      6 47—48 79 89 174 380 529 539 1250
Heaviside, O.      1648
1 2 3 4 5 6 7 8
blank
Реклама
blank
blank
HR
@Mail.ru
       © Электронная библиотека попечительского совета мехмата МГУ, 2004-2025
Электронная библиотека мехмата МГУ | Valid HTML 4.01! | Valid CSS! О проекте