Авторизация
Поиск по указателям
Dunford N., Schwartz J., Bade W.G. — Linear operators. Part 2
Обсудите книгу на научном форуме
Нашли опечатку? Выделите ее мышкой и нажмите Ctrl+Enter
Название: Linear operators. Part 2
Авторы: Dunford N., Schwartz J., Bade W.G.
Аннотация: In mathematics, a linear map (also called a linear mapping, linear transformation or, in some contexts, linear function) is a mapping V ↦ W between two modules (including vector spaces) that preserves (in the sense defined below) the operations of addition and scalar multiplication. An important special case is when V = W, in which case the map is called a linear operator, or an endomorphism of V. Sometimes the definition of a linear function coincides with that of a linear map, while in analytic geometry it does not.
A linear map always maps linear subspaces to linear subspaces (possibly of a lower dimension); for instance it maps a plane through the origin to a plane, straight line or point.
In the language of abstract algebra, a linear map is a homomorphism of modules. In the language of category theory it is a morphism in the category of modules over a given ring.
Язык:
Рубрика: Математика /
Статус предметного указателя: Готов указатель с номерами страниц
ed2k: ed2k stats
Год издания: 1963
Количество страниц: 986
Добавлена в каталог: 18.02.2014
Операции: Положить на полку |
Скопировать ссылку для форума | Скопировать ID
Предметный указатель
Heine — Borel theorem (17)
Heinz, E. 612 933 935
Heinz, inequality of X.9 (935)
Heisenberg, W. 1264
Helly, E. 81 86 880 891
Helson, H. 385 1160 1161
Hensel, K. 607
Herglotz, G. 865 1274
Hermitian matrix, definition (561)
Hermitian operator, definition IV.18.72 (850) X.4.1
Hettinger, E. 79 80 85 539 609 926 927 928 929 936 1269 1584
Hewitt, E. 233 373 379 381—882 384—385 387
Heywood, P. 1615
Hilb, E. 608 1583 1584 1585 1589 1590
Hilbert cube see also "Hilbert space"
Hilbert cube, as a fixed point in space V.10.2—3 (453—454)
Hilbert cube, definition and compactness IV.13.70 (350) (453)
Hilbert proper value integral XI.7.8 (1059)
Hilbert space, adjoint of an operator VI.2.9—10 (479—480)
Hilbert space, characterizations of (393—394)
Hilbert space, definition IV.2.26 (242) (1773)
Hilbert space, finite dimensional IV.2.1 (288) IV.3
Hilbert space, general, additional properties IV.15 (3701
Hilbert space, remarks Oil (372—373)
Hilbert space, study of IV.4 Appendix
Hilbert — Schmidt operators XI.6
Hilbert — Schmidt operators, completeness of eigenfunctions XI.6.80 (1041) XI.6.31
Hilbert — Schmidt operators, definition XI.6.31 (1042)
Hilbert, D. 79—80 372 461 531—532 538—539 608 926 1083 1268 1584 1589 1590 1773
Hildebrandt, T.H. 81 85 92—93 233 373 380 388 391 392 609 1274
Hill, G.W. 1497
Hille — Yosida — Phillips theorem on the generation of semi-groups VIII.1.18 (624)
Hille, E. 80 92 543 606 608 610 612 624 726—727 729 883 1118 1162 1274 1628
Hirschman, I.I. 728 1183
Hobson, E.W. 383 1583
Hoelder inequality III.8.2 (119)
Hoelder inequality, conditions for equality in III.9.42 (173)
Hoelder inequality, generalizations of VI.11.1—2 (527) VI.11.13—18
Hoelder, E. 119 373 612
Hoermander, L. 1166 1170
Homeomorphism, condition for I.5.8 (18)
Homeomorphism, definition I.4.15 (13)
Homomorphism, between algebras (40)
Homomorphism, between Boolean algebras (43—44)
Homomorphism, between groups (851
Homomorphism, between rings (39)
Homomorphism, natural, between linear spaces (38)
Hopf, E. 669 670 722 728 729 1274
Hopf, H. 47 467
Horn, A. 610 1079
Hotta, J. 466
Hukuhara, M. 474
Hurewicz, W. 467 722 729
Hurwitz, W.A. 462
Hyers, D.H. 92 471 609
Hypergeometric series and equation XIII.8 (1509)
Ideal(s), existence of maximal (39)
Ideal(s), in a ring (38)
Ideal(s), in an algebra (40)
Ideal(s), of operators (552—538) (611)
Idempotent element, definition (40)
Idempotent operator or projection, definition (37)
Imaginary part of a complex number, definition (4)
Inaba, M. 474
Independent, linearly (36)
Index, definition VII.1.2 (556)
Indexed set (3)
Inequalities, applications to other inequalities VI.11 (526)
Inequalities, M. Rlesz convexity theorem VI.10.11 (525)
Inequalities, remarks on (541)
Infimum, limit inferior of a sequence of sets (126)
Infimum, limit interior of a set or sequence of real numbers (4)
Infimum, of a set of real numbers (3)
Infinitesimal generator, of a group (627—628)
Infinitesimal generator, of a semi-group of operators, definition VIII.1.6 (619)
Infinitesimal generator, of a semi-group of operators, functions of VIII.2
Infinitesimal generator, of a semi-group of operators, perturbation of VIII.11.19 (631)
Infinitesimal generator, study of VIII.1
Ingleton, A.W. 88 400
Inner product in a Hilbert space IV.2.26 (242)
Integrable function, conditions for integrability III.2.22 (117) III.3 III.6 IV.8 IV.10.9—10
Integrable function, definition III.2.17 (112) IV.10.7
Integrable function, properties III.2.18—22 (113—117) IV.10.8
Integrable function, simple function, definition III.2.13 (108)
Integrable function, simple function, properties III.2.14—18 (108—113)
Integral, change of variables III.10.8 (182)
Integral, countable additive case I1I.6
Integral, extension to positive measurable functions (118—119)
Integral, finitely additive raise III.2—3 III.2.17
Integral, integration by parts III.6.22 (154)
Integral, line integral (225)
Integral, summability of IV.13.78—101 (351—356)
Integral, with operator valued measure X.I. (893)
Integral, with vector valued measure IV.10.7 (328)
Interior mapping principle II.2.1 (55)
Interior mapping principle, discussion of (83—85)
Interior of a set I.4.1 (10)
Interior point I.4.1 (10)
Internal point, definition V.1.6 (410)
Intervals, definitions (4) III.5.15
Invariant measures V.11.22 (460) VI.9.38—44
Invariant metric, in a group (90—91)
Invariant metric, in a linear space II.1.10 (51)
Invariant set (3)
Invariant subgroup (35)
Invariant subspace, definition of X.9 (929)
Invariant subspace, reducing an operator X.9 (929)
Inverse function and inverse image (3)
Inverse of an operator and adjoints VI.2.7 (479)
Inverse of an operator and adjoints, existence and continuity of VII.6.1 (584)
Inverting sequence of polynomials VIII.2.12 (650)
Involution, in a B-algebra IX.1 1
Involution, in an algebra (40)
Ionescu Tulcea, C.T. 926
Irregular singularity of a differential equation XIII.6 (1432) (1434)
Isolated spectral point VII.3.15 (571)
Isometry, discussion of (91—82)
Isometry, embedding of a B-space into its second conjugate space II.3.18—19 (66)
Isometry, isomorphism and equivalence II.3.17 (65)
Isomorphism see also "Homomorphism"
Isomorphism, topological see "Homeomorphism"
Iyer, V.G. 399
Izumi, S. 235 382 388 392 543 552
Jackson, D. 1589
Jacobi, C.G.J. 1275 1512
Jacobson, N. 48 985
James, R.C. 88 98 94 393—394 472—478
Jamison, S.L. 612
Jerison, M. 397 473
Jessen see "Fubini — Jessen theorems"
Jessen, B. 207 209 235 530
Jordan canonical form for a matrix VII.2.17 (563)
Jordan curve (225)
Jordan decomposition, of a measure III.4.7 (128) III.4.11
Jordan decomposition, of an additive real set function III.1.8 (98)
Jordan, C. 98 392
Jordan, P. 393—394
Jost, R. 1568 1626
Julia, G. 934
Kac, M. 406 407
Kaczmarz, S. 94
Kadison, R.V. 385 395 397
Kahane, J.P. 1161
Kakutani see "Markov — Kukutani theorem"
Kakutani, S. 86 90 235 380 384 386 393—394 395 396 456—457 460 462 463 471 473 539 541 554 715 728—730 1152
Kamke, E. 47
Kantorovitch, L.V. 233 373 386 388 395 540 543
Kaplansky, I. 384—385 396 882 884 886 934 935 1161
Kaplansky, theorem on as a B-algebra IX.4.20 (882)
Karaseva, T.M. 1587
Karlin, S. 98 94
Kato, T. 612 935
Katznelson, Y. 1161
Kay, I. 1622 1626
Kaz, I. 1590
Keldys, M.V. 611 1163
Kelley, J.L. 47—48 382 385 397 398 486 554 884 927 929
Kellogg, O.D. 470
Kemble, E.C. 1592
Kernel, convergence of III.12.10—12 (219—222) IV.13C IV.14
Kernel, of a homomorphism (39) IV.13C IV.14
Kerner, M. 92
Khintchine, A. 729
Kinoshita, A. 471
Klee, V.L. 87 90 460—461 466
Kleinecke, D.C. 553 610 612
Kneser, A. 1463 1588 1590 1592
Knopp, K. 48 536
Kober, H.A. 554
Kodaira theorem XIII.2.26 (1302)
Kodaira, K. 927 1152 1301 1302 1351 1355 1364 1586 1587 1589 1590
Koethe, G. 84 399 465
Kolmogoroff, A. 91 385 388
Komatuzaki 554
Koopman, B.O. 728 827 929
Koosis, P. 1161
Kostyucenko, A. 94 1587
Kozlov, V. 94
Krackovskii, S.N. 473 611
Kramer, H.P. 612
Kramer, V.A. 612
Kramers, H.A. 1592 1614
Krasnosel'skii, M.A. 400 611 1270 1273 1587 1591
Krein — Milman theorem, on extremal points V.8.4 (440)
Krein — Smulian theorem, on closed convex sets in V.5.7 (429)
Krein — Smulian theorem, on convex closure of a weakly compact set V.6.4 (434)
Krein, M. 94 387 395 396 397 429 434 440 461 463 465—466 611 612
Krein, M.G. 1160 1163 1270 1273 1587 1590 1591 1622 1626
Krein, S. 395 396 397
Kryloff, N. 780
Kuerschak, J. 79
Kuller, R.G. 395
Kunisawa, K 391
Kuratowski, C. 83
Lacunary series, definition IV.I4.63 (366)
Lagrange, J.L. 372 1582 1588
Laguerre, E.N. 607
Lalesco, T. 1081 1162
Lamson, K.W. 35
Landsu, E. 80 1591
Langer, R.E. 1592
Langlsnds, R.P. Errata-p.5
Laplace and Laplace — Stieltjes transform VIII.2.1 (642)
LaSalle, J.P. 91 399
Latshaw, V.V. 1589
Lattice, definitions (43)
Laurent expansion (229)
Lax, P.D. 88 1635 1748
Leader, S. 233
Least upper bound, essential III.1.11 (100) (899)
Least upper bound, in a partially ordered set I.2.3 (4)
Least upper bound, in the real numbers (3)
Lebesgue — Stieltjes measure on an interval (143)
Lebesgue, decomposition theorem III.4.14 (132) (233)
Lebesgue, dominated convergence theorem III.3.7 (124) III.6.16 IV.10.10
Lebesgue, extension theorem III.5.17—18 (142—143)
Lebesgue, H. 80 124 132 143 151 213 232 284 390
Lebesgue, measure, in n-dimensional space III.11.6 (188)
Lebesgue, measure, on an interval (143)
Lebesgue, set III.12.9 (218)
Lebesgue, spaces see " -spaces"
Lefschetz, S. 47 467
Legendre, A.M. 1512
Leja, P. 79
Lengyel, B.A. 927 928 929
Leray, J. 84 470 609
Levi, B. 373
Levinson, N. 1266 1433 1434 1498 1503 1587 1590 1591 1592 1622
Levitan, B.M. 1587 1588 1590 1616 1622 1623 1624 1625 1626 1628
Levy, P. 407 881
Lezanski, T. 610
Lidskii, V.B. 1587 1591
Lie, S. 79
Lifsic, I.M. 612
LIMIT see also "Convergence"
Limit, Banach II.4.22—23 (73)
Limit, inferior (or superior), of a sequence of sets III.4.3 (126)
Limit, inferior (or superior), of a set or sequence of real numbers (4)
Limit, limit of a set I.4.1 (10)
Limit, weak, definition II.3.25 (67)
Limit, weak, in special spaces IV.15
Limit, weak, properties II.3.26—27 (68)
Lindeloef theorem I.4.14 (12)
Lindeloef, E. 12 1043 1115
Lindgren, B.W. 406
Line integral, definition (225)
Linear dimension (91)
Linear functional (38) see
Linear manifold (36) see
Linear operator (36) see
Linear space I.11
Linear space, normed II.3.1 (59) see
Linear space, topological II.1.1 (49)
Linear transformation (36) see
Linearly independent (36)
Lions, J.L. 1724 1726
Liouville, J. 1291 1581 1582 1583
Lioville theorem (231)
Littlewood, J.E. 78 531—532 541 718 1004 1006 1007 1076 1147 1177 1181 1183 1184 1591
Livingston, A.E. 399
Livsic, M.S. 611 1164 1587
Localization of series, definition (359)
Locally compact space, definition 1.5.5 (17)
Locally convex space, definition V.2.9 (417)
Locally convex space, local convexity, of and weak topologies V.3.3 (419)
Locally convex space, local convexity, of in the bounded topology V.5.5 (428)
Locally convex space, separation of convex sets in V.2.10—13 (417—418)
Loewig, H. 372 373
Loewner, K. 407
Loomis, L.H. 79 882 886 883 927 1145 1149 1152 1160 1161 1274
Lorch, E.R 88 94 393—394 407 554 609 728 884 927
Lorentz, G.G. 84 400 543
Lower bound for an operator XII.5.1 (1240)
Lumer, G. 931 933
Maak, W. 386
MacDuffee, C.C. 606 607
Mackey, G.W. 393—394 554 1160 1161
MacLane, S. 48
Macphail, M.S. 93
Maddaus, I. 93 548 552
Maeda, F. 395 1274
Malliavin, P. 1161
Mandelbrojt, S. 1161
Manifold, closed linear, spanned by a set II.1.4 (50)
Manifold, in a linear space (36) see
Manifold, orthogonal, in Hilbert space IV.4.3 (249)
Mapping see also "Function"
Mapping, interior principle II.2.1 (55)
Mapping, interior principle, remarks on (83—85)
Marcenko, V.A. 1587 1590
Marcinkiewicz, J. 720 1166 1180 1182
Marinescu, G. 609
Markouchevitch, A. 94
Markov process, application of uniform ergodic theory to VIII.8
Markov process, definition (659)
Markov — Kakutani theorem, on fixed points of affine maps V.10.6 (456)
Markov, A. 380 456 471
Martin, R.S. 79 610 883
Martin, W.T. 406
Marumaya, G. 406
Реклама