|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Jacob C. — Illustrating Evolutionary Computation with Mathematica |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Meta-evolution strategies, climbing meta-mountains 260
Meta-evolution strategies, island model and 258—260
Meta-evolution strategies, meta-evolution and strategy parameter 225
Meta-evolution strategies, population islands 260
Meta-evolution strategies, subpopulations as meta-individuals 258
Meta-evolution strategies, with subpopulations 258—260
Meta-evolution strategies, with three subpopulations 271—272 273
Meta-learning, evolution as 79
Michalewicz, Marek 526
Michalewicz, Zbigniew 208 396
Michielssen, E. 208 569
Mimesis (see also butterfly mimesis simulation)
Mimesis, butterfly color adaptations 33—34
Mimesis, butterfly mimesis simulation 34—42
Mimesis, color adaptations 33
Mimesis, defined 33
Mimesis, directional selection for 34
Mimesis, industrialization and 33—34
Mimesis, melanistic moths 34
Mimesis, phytomimesis 33
Minimization vs. maximization optimization 69
Mitchell, Melanie 207
Mobiles (GP), function 386—387
Mobiles (GP), function 384—385 388
Mobiles (GP), function 385—386
Mobiles (GP), function 387
Mobiles (GP), function 385 386
Mobiles (GP), function 383
Mobiles (GP), encoding 377—378
Mobiles (GP), evaluation by balance 382—385 388—389 390
Mobiles (GP), evolution of balanced mobiles 388—392 393—395
Mobiles (GP), generating structures 385—388
Mobiles (GP), graphical representation of 378—382
Mobiles (GP), mobile bars 377—378
Mobiles (GP), well-balanced 377
Mock, Kenrick 526
Model of evolution 57—60
Model of evolution, differential fitness 58
Model of evolution, fitness inheritance 58
Model of evolution, genotypical variation 58—60
Model of evolution, phenotypical selection 58—60
Model of evolution, variability 57—58
Modeling adaptive systems, adaptation steps 62—63
Modeling Collective Phenomena in the Sciences 526
Modeling Nature 469
Modern Cellular Automata: Theory and Applications 468
Modularization of programs, GP 432
Moore neighborhood for cellular automata 441
Morphogenesis, agents of 439
Morphogenesis, in nature 439
Moths, melanistic 34
Move operations for turtle 459—462
MSA see mutative step size adaptation (MSA) in ES
Multimodal functions, constrained optimization 69
Multimodal functions, ES optimization of 266
Multimodal functions, global maximum 68
Multimodal functions, local maxima 68—69
Multimodal functions, multimodality and function theory 266
Multimodal functions, noisy objective function 67 68
Multimodal functions, objective function 67—68 69—70 186 188
Multimodal functions, optimization on 64—67
Multimodal functions, triple sinc (ES test function) 266—268
Multimodal search spaces, defined 64
Multimodal search spaces, example 64 66
Multimodal search spaces, gradient-following strategies in 66—67
Multioperator GP 426
Multirecombination of ES chromosomes, discrete 233—235
Multirecombination of ES chromosomes, global 249—250
Multirecombination of ES chromosomes, in Mathematica 243—245
Multirecombination of ES chromosomes, intermediate 233—235
Multirecombination of ES chromosomes, local 247—249
Multirecombination of ES chromosomes, on parameter lists 233—234
Multirecombination of GA chromosomes 131—133
Multirecombination of GA chromosomes, binary multirecombination 132
Multirecombination of GA chromosomes, discrete componentwise 126
Multirecombination of GA chromosomes, recombination mask 126
Mutated assembler programs 287—288
Mutated assembler programs, automatic programming vs. random search 287—288
Mutated assembler programs, success counter and adaptive mutation 287
Mutation (see also evolution strategies mutation; genetic algorithms mutation; genetic programming mutation; mutation operators on FSA)
Mutation operator (see also evolution strategies mutation; genetic algorithms mutation; genetic programming mutation; mutation operators on FSA)
Mutation operator, 408 421 422
Mutation operator, ArtFlowers 498
Mutation operator, L-system 477
Mutation operator, on FSA 303—320
Mutation operators on FSA 303—320
Mutation operators on FSA, adding a state 306—307 308
Mutation operators on FSA, adding a transition 309—311
Mutation operators on FSA, changing a transition’s input symbol 313—314 315
Mutation operators on FSA, changing a transition’s output symbol 314—316
Mutation operators on FSA, changing a transition’s source 316—318
Mutation operators on FSA, changing a transition’s target 318—320
Mutation operators on FSA, changing the initial state 304—305
Mutation operators on FSA, deleting a state 307—309
Mutation operators on FSA, deleting a transition 311—313
Mutation operators on FSA, fitness-dependent mutation 341—342
Mutation operators on FSA, GA mutation operators vs 303—304
Mutation operators on FSA, keeping the FSA deterministic 307
Mutation operators on FSA, modifying the set of states 305—309
Mutation operators on FSA, modifying the set of transitions 309—313
Mutation operators on FSA, modifying transitions 313—320
Mutation operators on FSA, variable step sizes 338 341
Mutation radius, increase, effects in string evolution 25—28
Mutation radius, small vs. large 11—12 18—19
Mutation radius, string evolution example 11—12 17 18—19 25—28
Mutation rate, increase, effects in string evolution 28—32
Mutation rate, small vs. large 18—19
Mutation rate, string evolution example 11 16—17 18—19 28—32
Mutation step sizes in EP 338 341
Mutation, as principle of evolution 2 6
Mutation, breeding artificial flowers 504—509
Mutation, dispersion provided by 177
Mutation, effect on population structure 177—178
Mutation, fitness inheritance and 58
Mutation, in cellular automata 446—449
Mutation, increase, effects in string evolution 25—32
Mutation, mutation operators on FSA 303—320
Mutation, operation for strings 10—12
Mutation, point mutation on GA chromosomes 81 105—121
Mutation, silent 1 17
Mutation, small changes vs. large changes 11—12 18—19 222—224
Mutative step size adaptation (MSA) in ES 225—230
Mutative step size adaptation (MSA) in ES, function for 226
Mutative step size adaptation (MSA) in ES, as second-order evolution 226 229
Mutative step size adaptation (MSA) in ES, defined 225
Mutative step size adaptation (MSA) in ES, heuristics for step size adaptations 226—230
Mutative step size adaptation (MSA) in ES, meta-evolution and 225 258—260
Nature, evolution as nature’s programming method 283
Nature, evolution strategies and 211—212 571
Nature, morphogenesis in 439
Nature, paradigms in 1
Nature, redundant triplet coding for proteins in 90
Neighborhoods for cellular automata 440—441
Neural networks, as adaptive systems 61 399
Neural networks, as AI bottom-up approach 297
Neural networks, described 1
Niklas, Karl 525
Nonhomologous GA chromosomes 158—161
Normalized representation of GA chromosomes 87
Normally distributed random numbers in ES mutation 219—222
Notation for GP evolution scheme 373
Notation for GP evolution scheme, for EP evolution scheme 325
Notation for GP evolution scheme, for ES evolution scheme 261
Notation for GP evolution scheme, for GA evolution scheme 171
Number decoding for strings 13—14
Number encoding for strings 8—9 13
Numerical Optimization of Computer Models 279
Objective function, evaluation function example 176
Objective function, multimodal 67—68 69—70 186 188
Objective of evolution 42
| Ochoa, Gabriela 487
Ontogeny 3—4
Operators, adaptive system 61
Operators, genetic see genetic operators
Optimization, constrained 69
Optimization, ES mutation role in 216—218
Optimization, evolutionary algorithms for 57—77
Optimization, evolutionary parameter optimization scheme 71—75
Optimization, GA example 67—76
Optimization, minimization vs. maximization 69
Optimization, of ES multimodal functions 266
Optimization, on multimodal functions 64—67
Optimization, through adaptive structures 60—63
Order of a schema 194
Origin of Species, The 51
Owens, A. J. 288 298 299 344
Papert, Simon 458
Parallel Problem Solving from Nature (PPSN) 77 280
Parallel rewriting 449
Pattern of Evolution, The 52
Peano curve 475
Permutation operator, 408 421 422
Permutation operator, ArtFlowers 498
Permutation operator, GP 431
Permutation operator, L-system 477
Perpetual novelty 79 81 105 121—122
Phenotype evolution 481—482
Phenotypical selection, feedback loop with genotypical variation 59—60
Phenotypical selection, overview 58—60
Phenotypical structures in GA 80 81
Phylogeny 4
Phytomimesis 33
Pitch turtle move operations 461
Plant ecosystem evolution 519—525 (see also artificial plant evolution)
Plant evolution, artificial see artificial plant evolution
Plants to Ecosystems 526
Plus strategy, for EP evolution 325—326 331
Plus strategy, for ES evolution 254 261 277
Plus strategy, for GA evolution 168 171 190 192
Plus strategy, for GP evolution 373 374 376
Point mutation on GA chromosomes 105—121
Point mutation on GA chromosomes, diploid chromosomes 110—112
Point mutation on GA chromosomes, haploid chromosomes 106—108
Point mutation on GA chromosomes, homologous alleles 110
Point mutation on GA chromosomes, minor role of 81
Point mutation on GA chromosomes, new alleles introduced by 105
Point mutation on GA chromosomes, point mutation operator 106
Point mutation on GA chromosomes, polyploid chromosomes 108—110
Point mutation on GA chromosomes, probability 108
Point mutation on GA chromosomes, recombination vs. mutation 176—180
Point mutation on GA chromosomes, RNA chromosomes 112—117
Point mutation on GA chromosomes, schema theorem and mutation 205
Point mutation on GA chromosomes, visualization using facial expressions 117—121 122
Point mutation operator, GA 106
Point mutation operator, GP 431
Polyploid GA chromosomes 83—105
Polyploid GA chromosomes, defined 96—97 108
Polyploid GA chromosomes, diploidy and dominance on GA chromosomes 95—105
Polyploid GA chromosomes, form of 137
Polyploid GA chromosomes, general structure 96—97
Polyploid GA chromosomes, generating and interpreting 98—99
Polyploid GA chromosomes, haploid GA chromosomes 83—95
Polyploid GA chromosomes, point mutation on 108—110
Polyploid GA chromosomes, recombination 133 137—143
Polyploid GA chromosomes, visualization 98—99
Populations, adaptation of individuals vs 4—5
Populations, generating schema instances for 197
Populations, genotype and phenotype spaces 58—60
Populations, reproductive plan 64 65
Populations, subpopulations as meta-individuals 258
PPSN (Parallel Problem Solving from Nature) 77 280
Predecessor in L-systems 451
Prediction quality of automata, evaluating 328—331
Predictor FSA 302 303
Prisoner’s dilemma strategies 292
Probabilities, differential survival 162
Probabilities, for butterfly selection 36
Probabilities, operator weights adaptation 427—430
Probabilities, point mutation probability 108
Processes, adaptations as 5
Productions of L-systems 450 452 456 473
Program induction with genetic algorithms 291
Programming by evolution 283—295 (see also evolutionary programming; genetic programming)
Programming by evolution, assembler vs. higher programming languages 287
Programming by evolution, bibliographical notes 294—295
Programming by evolution, classifier systems 289—290
Programming by evolution, evaluation of program genomes 285
Programming by evolution, evolution of finite automata 288—289
Programming by evolution, evolving vs. programming 284—286
Programming by evolution, genetic programming on symbolic programming by evolution, expressions 292—294
Programming by evolution, genetic programming with linear genomes 291—292
Programming by evolution, hierarchically structured programs 285
Programming by evolution, induction of programs by evolutionary algorithms 285
Programming by evolution, mutated assembler programs 287—288
Programming by evolution, problems of 283—284 286
Programming by evolution, program induction with genetic algorithms 291
Programming by evolution, program representation problem 286
Programming by evolution, recombination and 288
Programming by evolution, TIERRA system 294
Prusinkiewicz, Przemyslaw 458 471 486 490 524 525
Pseudo code for term-structured GP 349
Quadratic Koch island 475 476
Quinton, R. E. 458
Rahmat — Samii, Y. 208
Random string generation 16
Random survival 162
Rank-based selection 164—166
Rank-based selection, function 165—166
Rank-based selection, problem of superindividuals 164—165
Ray, Thomas 294
Realistic Modeling and Rendering of Plant Ecosystems 526
Rearrangement of relative gene positions 152—153
Recessivity and dominance 99—100
Rechenberg, Ingo 211 212 226—227 228 229 252 279 342
Recombination (see also evolution strategies recombination; genetic algorithms recombination; genetic programming recombination)
Recombination mask 126
Recombination of GA chromosomes 133—143
Recombination of GA chromosomes, gene ordering 133
Recombination of GA chromosomes, haploid chromosomes 135—137
Recombination of GA chromosomes, meiotic recombination of diploid chromosomes 143—146
Recombination of GA chromosomes, polyploid chromosomes 133 137—143
Recombination operator, 408 420 421
Recombination operator, ArtFlowers 498
Recombination operator, L-system 477
Recombination, operator 408 420 421
Recombination, as GA principle 80—81
Recombination, breeding artificial flowers 510—513
Recombination, EP and 288 342
Recombination, GA 121—148
Recombination, GP 358—367 390
Recombination, L-system operator 477
Recombination, model of evolution and 58
Recombination, mutation vs 176—180
Recursive construction of GP terms 350—351
Reduction division simulation 143—146
Reproduction (see also evolution strategies selection and reproduction schemes)
Reproduction, as GA principle 80—81
Reproduction, EP reproduction scheme 288
Reproduction, ES selection and reproduction schemes 252—256
Reproduction, GA reproduction scheme 167—173
Reproduction, GP reproduction scheme 371—379
Reproduction, in evolutionary parameter optimization scheme 73
Reproductive plan 64 65
Ribosomes, translation of codons to amino acids by 88
Ridley, Mark 3 52 57
RNA chromosomes 88—93
RNA chromosomes, compact output form 94
RNA chromosomes, extraction of alleles 116
RNA chromosomes, point mutation on 112—117
RNA chromosomes, ribosome program 92—93
|
|
|
Ðåêëàìà |
|
|
|