|
|
Àâòîðèçàöèÿ |
|
|
Ïîèñê ïî óêàçàòåëÿì |
|
|
|
|
|
|
|
|
|
|
Jacob C. — Illustrating Evolutionary Computation with Mathematica |
|
|
Ïðåäìåòíûé óêàçàòåëü |
Differentiation in cells 439
Diploid GA chromosomes, defined 96
Diploid GA chromosomes, general structure 96
Diploid GA chromosomes, generating and interpreting 97—98 101—105
Diploid GA chromosomes, meiotic recombination 143—146
Diploid GA chromosomes, point mutation on 110—112
Diploid GA chromosomes, visualization 97—98 104 105 112
Diploid GA chromosomes, with dominant alleles 103—104
Diploidy and dominance on GA chromosomes 95—105
Diploidy and dominance on GA chromosomes, chromosome interpretation 101—105
Diploidy and dominance on GA chromosomes, extraction of dominant alleles 101—105
Diploidy and dominance on GA chromosomes, general structure of di- and -ploid chromosomes 96—97
Diploidy and dominance on GA chromosomes, generating and interpreting di- and -ploid chromosomes 97—99
Diploidy and dominance on GA chromosomes, simulation of dominant and recessive alleles 99—101
Diploidy, defined 95
Diploidy, meiosis and 95—96
Diploidy, of higher animals and plants 95—96
Directional selection for mimesis 34
Discovery of Evolution, The 52
Discrete encoding as GA principle 80
Discrete ES recombination 232—234
Discrete ES recombination, global 238—239
Discrete ES recombination, local 235
Discrete ES recombination, local multirecombination 235 247—249
Discrete ES recombination, multirecombination on parameter lists 233—234
Discrete GA recombination 123—124
Dispersion provided by mutations 177
Diversification of EP 338—344
Diversification of EP, application domains 343
Diversification of EP, combinatorial and parameter optimization 342
Diversification of EP, extensions of FSA evolution 338 341—342
Diversification of EP, fitness-dependent mutation 341—342
Diversification of EP, majority logic recombination 342
Diversification of EP, recent diversification and evolution 342—344
Diversification of EP, recombination and 342
Diversification of EP, strong causality 342—343
Diversification of EP, variable mutation step sizes 338 341
DOL-systems 450 453
Dominance, defined 99
Dominance, extraction of dominant alleles 100—105
Dominance, GA chromosome interpretation 101—105
Dominance, index-dependent 104—105
Dominance, interpretation of diploid chromosomes and 96
Dominance, recessivity and 99—100
Drawing operations for turtle 462
Dualism, as GA principle 80 81
Dualism, of individuals 60
Duplication GA operator 155—158
Duplication GA operator, chromosome with duplicated subsequence 157
Duplication GA operator, crosswise restitution and 155 156
Duplication GA operator, duplication defined 155
Duplication GA operator, effect of 183 184—185 555
Duplication GA operator, examples of duplication 157
Duplication GA operator, gene expression and 157—158
Duplication GA operator, on GA chromosomes 156—158
Duplication operator, 408 420 421
Duplication operator, ArtFlowers 498
Duplication operator, GA 155—158
Duplication operator, GP 431
Eldredge, Niles 52
Electromagnetic Optimization by Genetic Algorithms 208
Elementary building blocks as GA principle 80 81—82
Elitist selection 166—167
Elitist selection, function 166—167
Elitist selection, GA evolution scheme with 169
Embryonic development (ontogeny) 3—4
Emergence Order: From Chaos to Order 208
Encapsulation operator 408 420—421
Encoding, binary strings for genotypes 70 82
Encoding, binary vs. real numbers 84—85
Encoding, discrete, as GA principle 80
Encoding, evaluation function for binary-encoded numbers 176
Encoding, IL-systems 472—474
Encoding, number encoding for strings 8—9 13
Encoding, redundant, in nature 90
Encoding, triplet encoding of amino acids 88—90
Enumeration of schema instances 179 199—202
Environment, response to environmental signals 402
Environment, two-dimensional environment 400 401
Environment, as adaptive system component 61
Environment, constraints in 60
Environment, deriving models of 298—299
Environment, GA evolution under variable conditions 185—190 191—192
Environment, intelligent agents as predictors 299
Environment, interaction as adaptation step 62
Environment, predicting with FSAs 301—303
EP see evolutionary programming
Erf function 220—221
Error function in ES mutation 220—221
ES see evolution strategies
ES chromosomes (see also evolution strategies)
ES chromosomes, binary recombination 231
ES chromosomes, defined 213
ES chromosomes, discrete recombination 232—234
ES chromosomes, generating 214 215
ES chromosomes, global multirecombination 249—250
ES chromosomes, global recombination 234 237—243
ES chromosomes, in Evolvica 213—215
ES chromosomes, intermediate recombination 232—234
ES chromosomes, local binary recombination 245—247
ES chromosomes, local multirecombination 247—249
ES chromosomes, local recombination 234 235—237
ES chromosomes, multiple global and local recombination 250—252
ES chromosomes, multirecombination in Mathematica 243—245
ES chromosomes, mutation of object parameters 218 222—224
ES chromosomes, mutation with step size adaptation 225—230
ES chromosomes, recombination in Mathematica 231—232
ES chromosomes, visualizing 214—215
ES chromosomes, with object and strategy parameters 213
Evaluation function, as adaptation step 62
Evaluation function, as adaptive system component 61
Evaluation function, ES evolution 265
Evaluation, example 405—406
Evaluation, breeding artificial flowers 499—500
Evaluation, for best selection in GP 373
Evaluation, in evolutionary parameter optimization scheme 72—73
Evaluation, L-system 477—479 514
Evaluation, of EP automaton prediction quality 328—331
Evaluation, of genotypes in GA 174—176
Evaluation, of GP mobiles by balance 382—385 388—389 390
Evaluation, of program genomes 285
Evolution 52
Evolution and Optimum Seeking 279
Evolution of Complexity, The 51
Evolution of fractal structures see fractal structure evolution
Evolution of Parallel Cellular Machines 469
Evolution of plant ecosystems 519—525
Evolution strategies 21 1—280
Evolution strategies at work 266—279
Evolution strategies at work, ascent of all peaks 272—279
Evolution strategies at work, climbing example with three populations 268—270
Evolution strategies at work, meta-evolution of three subpopulations 271—272 273
Evolution strategies at work, optimization of multimodal functions 266
Evolution strategies at work, sinc function 267
Evolution strategies at work, triple sine (multimodal test function) 266—268
Evolution strategies mutation 216—231
Evolution strategies mutation, ascent by mutation example 216—218
Evolution strategies mutation, density function 219—220
Evolution strategies mutation, error function 220—221
Evolution strategies mutation, further information 231
Evolution strategies mutation, generation function for normally distributed random numbers 221—222
Evolution strategies mutation, heuristics for step size adaptations 226—230
Evolution strategies mutation, meta-evolution 225 258—260
Evolution strategies mutation, mutated vector of object parameters 218
Evolution strategies mutation, mutation operator defined 218
Evolution strategies mutation, mutative step size adaptation (MSA) 225
Evolution strategies mutation, normally distributed random numbers 219—222
Evolution strategies mutation, of object parameters 218—224
Evolution strategies mutation, role in optimization 216—218
Evolution strategies mutation, second-order evolution 226 229
| Evolution strategies mutation, small vs. large variations 222—224
Evolution strategies mutation, with step size adaptation 218 225—230
Evolution strategies recombination 231—252
Evolution strategies recombination, binary 231
Evolution strategies recombination, discrete 232—234
Evolution strategies recombination, examples 245—252
Evolution strategies recombination, global 234 237—243
Evolution strategies recombination, global multirecombination 238 249—250
Evolution strategies recombination, in Mathematica 231—232
Evolution strategies recombination, intermediate 232—234
Evolution strategies recombination, local 234 235—237
Evolution strategies recombination, local binary 245—247
Evolution strategies recombination, local multirecombination 235 247—249
Evolution strategies recombination, local vs. global 234
Evolution strategies recombination, multiple global and local 250—252
Evolution strategies recombination, multirecombination in Mathematica 243—245
Evolution strategies recombination, multirecombination on parameter lists 233—234
Evolution strategies selection and reproduction schemes 252—256
Evolution strategies selection and reproduction schemes, ( + ) and (, ) evolution strategies 255—256
Evolution strategies selection and reproduction schemes, (1 + ) and (1, ) evolution strategies 252—255
Evolution strategies selection and reproduction schemes, (1 + 1) evolution strategies 253—254
Evolution strategies selection and reproduction schemes, ascent by mutation example 216—218
Evolution strategies selection and reproduction schemes, comma strategy 254—255
Evolution strategies selection and reproduction schemes, ES notation extensions 257—258
Evolution strategies selection and reproduction schemes, evolution strategies with recombination 256
Evolution strategies selection and reproduction schemes, graphical notation of basic elements for description 253
Evolution strategies selection and reproduction schemes, plus strategy 254
Evolution strategies, ( + ) and (, ) evolution strategies 255—256
Evolution strategies, (1 + ) and (1, ) evolution strategies 252—255
Evolution strategies, (1 + 1) evolution strategies 253—254
Evolution strategies, bibliographical notes 279—280
Evolution strategies, comma strategy 254—255 261 274
Evolution strategies, evolution control function 261—263
Evolution strategies, evolutionary algorithms and 344
Evolution strategies, experimentum crucis of 212
Evolution strategies, GP vs 358—359 373
Evolution strategies, graphical notation of basic elements for description 253
Evolution strategies, meta-evolution strategies 225 258—260
Evolution strategies, mutation 216—231
Evolution strategies, natural evolution and 211—212
Evolution strategies, notation extensions 257—258
Evolution strategies, plus strategy 254 261 277 557
Evolution strategies, recombination 231—252
Evolution strategies, representation of individuals 213—215
Evolution strategies, selection and reproduction schemes 252—256
Evolution strategies, vectors of real numbers in 213
Evolution strategies, with Evolvica 260—265
Evolution theory 52
Evolution, artificial intelligence and 3
Evolution, as development 3
Evolution, as meta-learning 79
Evolution, as nature’s programming method 283
Evolution, as reproductive plan 64 65
Evolution, bibliographical notes 51—53
Evolution, coevolution of plant species 519—520 522—524 525
Evolution, definitions of 203
Evolution, development vs 3
Evolution, evolving vs. programming 284—286
Evolution, inheritance and 3
Evolution, interactive design by 42 45
Evolution, objective of 42
Evolution, of finite automata 288—289
Evolution, ontogenetic 3 4
Evolution, phylogenetic 4
Evolution, programming by 283—295
Evolution, second-order 226 229
Evolution, selection-mutation principle 2 6
Evolution, simplified formal model of 57—60
Evolution, string evolution example 5—33
Evolution, variational 1
Evolution: Society, Science and the Universe 52
Evolutionary algorithms 344 399 472
Evolutionary Algorithms and Emergent Intelligence 435
Evolutionary algorithms for optimization 57—77
Evolutionary algorithms for optimization, adaptation steps 62—63
Evolutionary algorithms for optimization, bibliographical notes 75—77
Evolutionary algorithms for optimization, example optimization with genetic evolutionary algorithms for optimization, algorithms 67—75
Evolutionary algorithms for optimization, general scheme 63—75
Evolutionary algorithms for optimization, main components of adaptive systems 61
Evolutionary algorithms for optimization, optimization on multimodal functions 64—67
Evolutionary algorithms for optimization, optimization through adaptive structures 60—63
Evolutionary algorithms for optimization, simplified formal model of evolution 57—60
Evolutionary Algorithms in Theory and Practice 76
Evolutionary Art and Computers 53
Evolutionary Biology of Plants, The 525
Evolutionary Computation journal 76
Evolutionary computation resources 75—77
Evolutionary Computation-Towards a New Philosophy of Machine Intelligence 76
Evolutionary Computation: The Fossil Record 75—76 294
Evolutionary design 52—53
Evolutionary Design by Computers 52 53
Evolutionary parameter optimization scheme 71—75
Evolutionary parameter optimization scheme, interpretation and evaluation steps 72—73
Evolutionary parameter optimization scheme, reproduction steps 73
Evolutionary parameter optimization scheme, selection step 73
Evolutionary parameter optimization scheme, variation step 73
Evolutionary programming 297—344 (see also finite state automata (FSA))
Evolutionary programming at work 328—338 339—341
Evolutionary programming at work, automata pruning 331—332 337
Evolutionary programming at work, comma strategy 331
Evolutionary programming at work, compacting the predictors 332 335—336
Evolutionary programming at work, detailed look at selected automata 332 336—337 339—341
Evolutionary programming at work, evaluating automaton prediction quality 328—330
Evolutionary programming at work, FSA evolution experiment 331—338 339—341
Evolutionary programming at work, original EP experiments 337
Evolutionary programming at work, plus strategy 331
Evolutionary Programming Conference series 289 294—295
Evolutionary programming selection and evolution scheme 322—325
Evolutionary programming selection and evolution scheme, basic selection scheme 322—323
Evolutionary programming selection and evolution scheme, tournament selection 323—325
Evolutionary programming, application domains 343
Evolutionary programming, automatic generation of FSA 320—322
Evolutionary programming, bibliographical notes 344
Evolutionary programming, combinatorial and parameter optimization 342
Evolutionary programming, comma strategy 325—326 331
Evolutionary programming, computer programs as FSA 298—303
Evolutionary programming, development of 297—298
Evolutionary programming, diversification of 338—344
Evolutionary programming, evolutionary algorithms and 344
Evolutionary programming, fitness-dependent mutation 341—342
Evolutionary programming, majority logic recombination 342
Evolutionary programming, mutation operators on FSA 303—320
Evolutionary programming, of finite automata 288—289
Evolutionary programming, plus strategy 325—326 331
Evolutionary programming, recombination and 288 342
Evolutionary programming, reproduction scheme 288
Evolutionary programming, selection and evolution scheme 322—325
Evolutionary programming, strong causality 342—343
Evolutionary programming, variable mutation step sizes 338 341
Evolutionary programming, with Evolvica 325—328
Evolutionsstrategie 94 279
Evolvica and EP 325—328
Evolvica and EP, adding an FSA state 307 308
Evolvica and EP, adding an FSA transition 310—311
Evolvica and EP, changing a transition’s input symbol 313—314 315
Evolvica and EP, changing a transition’s output symbol 315—316 559
Evolvica and EP, changing a transition’s source 317—318
Evolvica and EP, changing a transition’s target 320 321
Evolvica and EP, comma strategy 325—326 331
Evolvica and EP, deleting an FSA state 309
Evolvica and EP, deleting an FSA transition 312—313
Evolvica and EP, EP scheme 325
Evolvica and EP, EP scheme options 325
Evolvica and EP, evolution function 326—328
Evolvica and EP, generating a population of FSA 321—322
Evolvica and EP, generating a random (Mealy) machine 320—321
Evolvica and EP, generating a random FSA 321
Evolvica and EP, mutation function 304—305
Evolvica and EP, plus strategy 325—326 331
Evolvica and EP, starting an experiment 326
|
|
|
Ðåêëàìà |
|
|
|