Ãëàâíàÿ    Ex Libris    Êíèãè    Æóðíàëû    Ñòàòüè    Ñåðèè    Êàòàëîã    Wanted    Çàãðóçêà    ÕóäËèò    Ñïðàâêà    Ïîèñê ïî èíäåêñàì    Ïîèñê    Ôîðóì   
blank
Àâòîðèçàöèÿ

       
blank
Ïîèñê ïî óêàçàòåëÿì

blank
blank
blank
Êðàñîòà
blank
Jacob C. — Illustrating Evolutionary Computation with Mathematica
Jacob C. — Illustrating Evolutionary Computation with Mathematica



Îáñóäèòå êíèãó íà íàó÷íîì ôîðóìå



Íàøëè îïå÷àòêó?
Âûäåëèòå åå ìûøêîé è íàæìèòå Ctrl+Enter


Íàçâàíèå: Illustrating Evolutionary Computation with Mathematica

Àâòîð: Jacob C.

Àííîòàöèÿ:

An essential capacity of intelligence is the ability to learn. An artificially intelligent system that could learn would not have to be programmed for every eventuality; it could adapt to its changing environment and conditions just as biological systems do. Illustrating Evolutionary Computation with Mathematica introduces evolutionary computation to the technically savvy reader who wishes to explore this fascinating and increasingly important field. Unique among books on evolutionary computation, the book also explores the application of evolution to developmental processes in nature, such as the growth processes in cells and plants. If you are a newcomer to the evolutionary computation field, an engineer, a programmer, or even a biologist wanting to learn how to model the evolution and coevolution of plants, this book will provide you with a visually rich and engaging account of this complex subject.


ßçûê: en

Ðóáðèêà: Ìàòåìàòèêà/

Ñòàòóñ ïðåäìåòíîãî óêàçàòåëÿ: Ãîòîâ óêàçàòåëü ñ íîìåðàìè ñòðàíèö

ed2k: ed2k stats

Ãîä èçäàíèÿ: 2001

Êîëè÷åñòâî ñòðàíèö: 578

Äîáàâëåíà â êàòàëîã: 17.11.2013

Îïåðàöèè: Ïîëîæèòü íà ïîëêó | Ñêîïèðîâàòü ññûëêó äëÿ ôîðóìà | Ñêîïèðîâàòü ID
blank
Ïðåäìåòíûé óêàçàòåëü
Artificial intelligence (AI), neural networks      1 61 297 399
Artificial intelligence (AI), top-down approach      297
Artificial Intelligence Through Simulated Evolution      298 344
Artificial life      435 469
Artificial life (AL)      (see also $\verb\"AntTracker\"$)
Artificial life (AL), search behaviors      399
Artificial life (AL), test environment for      399—400
Artificial life (AL), tree-structured chromosomes and      347
Artificial Life Conference      470
Artificial Life journal      469 470
Artificial Life: A Report from the Frontier Where Computers Meet Biology      469
Artificial plant evolution      489—526 (see also breeding artificial flowers)
Artificial plant evolution, ArtFlower garden      490—493 514—517 518
Artificial plant evolution, ArtFlower L-system breeding      514
Artificial plant evolution, bibliographical notes      524—526
Artificial plant evolution, breeding artificial flowers      493—513
Artificial plant evolution, coevolution      519—520 522—524 525
Artificial plant evolution, comparing growth dynamics      517
Artificial plant evolution, comparing sizes of generated plants      493
Artificial plant evolution, competition      521—522 523
Artificial plant evolution, energetic turtle      519
Artificial plant evolution, environmentally sensitive turtle interpretation      519
Artificial plant evolution, evaluation function extensions      519
Artificial plant evolution, evolution of plant ecosystems      519—525
Artificial plant evolution, evolution of plant structures      489
Artificial plant evolution, evolution’s creativity      514—516
Artificial plant evolution, example succession      523—524 525
Artificial plant evolution, extensions for more realistic plant modeling      517—519
Artificial plant evolution, first variants of Lychnis wild type      499—504
Artificial plant evolution, genetic L-system programming (GLP)      490 517 518
Artificial plant evolution, growth and recursive branching      492—493 494 495
Artificial plant evolution, growth dynamics      519
Artificial plant evolution, growth rate      521—522
Artificial plant evolution, L-systems for      489—490 491
Artificial plant evolution, macro turtle commands      490—491
Artificial plant evolution, model for plant ecosystems      520—522
Artificial plant evolution, mutation effects      504—509
Artificial plant evolution, parametrized plants      521
Artificial plant evolution, plant ecosystem scenario      520
Artificial plant evolution, plant interactions      519
Artificial plant evolution, preparations for breeding experiments      495 499
Artificial plant evolution, primary succession      521
Artificial plant evolution, recombination effects      510—513
Artificial plant evolution, reproduction interval      522
Artificial plant evolution, structure formation and growth      492
Artificial plant evolution, structure formation dynamics      514
Artificial plant evolution, succession      521 523—524 525
ASCII (American Standard Code for Information Interchange)      8
Assembler programs, for one-bit registers      287
Assembler programs, higher programming languages vs      287
Assembler programs, mutated      287—288
Attributes of turtle      462—463
Automata, cellular      see cellular automata
Automata, finite state      see finite state automata (FSA)
Automata, Languages, Development      486
Avida system      469
B$\ddot{a}$ck, Thomas      76 229
Bak, Per      51
Benyus, Janine      53
Best selection in GP      373
Best selection in GP, in ES      252—257
Best selection in GP, in GA      166—167
BGP (binary genetic programming)      291
Bibliographical notes, artificial life      469—470
Bibliographical notes, artificial plant evolution      524—526
Bibliographical notes, cellular automata      467—469
Bibliographical notes, evolution      51—52
Bibliographical notes, evolution strategies      279—280
Bibliographical notes, evolution theory      52
Bibliographical notes, evolutionary computation      75—77
Bibliographical notes, evolutionary design      52—53
Bibliographical notes, evolutionary programming      344
Bibliographical notes, genetic algorithms      207—209
Bibliographical notes, genetic programming      392 396—397 435
Bibliographical notes, Lindenmayer systems      486—487 524—526
Bibliographical notes, modeling of ecosystems      526
Bibliographical notes, programming by evolution      294—295
Bickel, A. S.      292
Bickel, R. W      292
Binary componentwise GA recombination      124—126
Binary ES recombination      231
Binary ES recombination, global      249—250
Binary ES recombination, local      245—247
Binary GA chromosomes      84—88
Binary GA chromosomes, compact output form with gene indices      86
Binary GA chromosomes, diploid      97
Binary GA chromosomes, generation of triploid chromosomes      139—140
Binary GA chromosomes, haploid      84—88 106—108
Binary GA chromosomes, mutation of haploid chromosomes      106—108
Binary GA chromosomes, normalized representation      87
Binary GA chromosomes, randomly arranging genes      86—87
Binary GA chromosomes, real numbers vs. binary encoding      84—85
Binary GA chromosomes, visualization      86 87
Binary genetic programming (BGP)      291
Binary matrices in GA evolution      174
Binary multirecombination of GA chromosomes      132
Binary strings, decoding      70—71
Binary strings, encoding      70
Binary strings, evaluation function for binary-encoded numbers      176
Binary strings, for genetic algorithms      82
Binary strings, genotypes represented as      70
Binary strings, real numbers vs      84—85
biomimicry      53
Biomorphs      45—51
Biomorphs, breeding of      47—51
Biomorphs, defined      45
Biomorphs, developmental genes of      45—46
Biomorphs, genome structure      45
Biomorphs, interactive evolution of      47—51
Biomorphs, mutant forms      46
Biomorphs, parameter range for variants      47
Biomorphs, search space      47
Bionics, described      1—2
Blind watchmaker principle of evolution      345
Blind Watchmaker, The      45 52
Bonner, John Tyler      51
Breeding artificial flowers      493—513 (see also artificial plant evolution)
Breeding artificial flowers, additional main sprout      512—513 520
Breeding artificial flowers, bloom-carrying branches      504 505
Breeding artificial flowers, branching      5 10 511
Breeding artificial flowers, counting blooms      499
Breeding artificial flowers, critical mass of preset structures      497
Breeding artificial flowers, crossover of identical genomes      511 520
Breeding artificial flowers, duplication      509
Breeding artificial flowers, elongation of stalks      504 505
Breeding artificial flowers, evolution of fitness values      503
Breeding artificial flowers, evolution of genome expressions      504 506—509
Breeding artificial flowers, first variants of Lychnis wild type      499—504
Breeding artificial flowers, fitness criterion      499—500 503
Breeding artificial flowers, formation of complex structures      500 503
Breeding artificial flowers, genealogical tree of Lychnis mutant      504 505
Breeding artificial flowers, genetic operators      497—498 551
Breeding artificial flowers, increasing blooms      500 502—503
Breeding artificial flowers, initial population      500 501
Breeding artificial flowers, L-rules      495—497 498 509
Breeding artificial flowers, measuring plants      499—500
Breeding artificial flowers, mutation effects      504—509
Breeding artificial flowers, mutations vs. recombinations      509
Breeding artificial flowers, parametrized expressions      497
Breeding artificial flowers, plant evaluation      499—500
Breeding artificial flowers, preparations for breeding experiments      495—499
Breeding artificial flowers, ramification with long branches      500 501
Breeding artificial flowers, recombination effects      510—513
Breeding artificial flowers, step-by-step evolution of structural traits      504 505
Breeding artificial flowers, templates      495 496 498—499
Breeding of biomorphs      47—51
Bremermann, H. J.      288
Broadcast language      290
Bucket brigade scheme      290
Butterfly mimesis simulation      34 42 43—44
Butterfly mimesis simulation, adaptation from gray to white      42 44
Butterfly mimesis simulation, adaptation from white to gray      40—42 43
Butterfly mimesis simulation, butterfly fitness calculation      35—36
Butterfly mimesis simulation, camouflage on tree trunks      38—42
Butterfly mimesis simulation, evolution simulation for white background      36—39
Butterfly mimesis simulation, generation of simple butterfly world      34—35
Butterfly mimesis simulation, reproduction phase      36
Butterfly mimesis simulation, selection phase      36
CA      see cellular automata
camouflage      see mimesis
Cantor set      475
CD turtle attribute      463
CEC (Congress on Evolutionary Computation)      76—77 280 344
Cellular Automata and Complexity      467—468
Cellular Automata Machines: A New Environment for Modeling      469
Cellular automata, AI uses for      399
Cellular automata, as models of complexity      440
Cellular automata, bibliographical notes      467—469
Cellular automata, Codd’s universal constructors      443
Cellular automata, Lindenmayer systems vs      455—456
Cellular automata, neighborhoods for      440—441
Cellular automata, nervous system paradigm      443
Cellular automata, parallel rewriting      449
Cellular automata, pattern formation in one dimension      441—443
Cellular automata, point mutations on automata rules      446
Cellular automata, self-reproducing loops      444 445
Cellular automata, self-reproducing machines      443
Cellular automata, structure formation and self-reproduction      443—449
Cellular automata, substitution principle of      439
Cellular automata, update rules for two neighbors      441—442
CGP (compiling GP)      292
Chernoff figures, GA recombination using      146—148 149
Chernoff figures, parameterized faces      118—119
Chernoff figures, point GA mutations using      117—121 122
Chernoff, H.      117
Chomsky grammars      449
Chromosomes      (see also ES chromosomes; GA chromosomes; GP chromosomes)
Chromosomes, data structure      84
Chromosomes, tree-structured      346—347
Classifier systems      289—290
Classifier systems, broadcast language      290
Classifier systems, bucket brigade scheme      290
Classifier systems, classifier      290
Classifier systems, classifier rule      289
Classifier systems, GA adaptation of populations      290
Climbing Mount Improbable      52
Closure property of GP terms      356—357
Codd, E. F.      443
Codons (triplets), overview      88
Codons (triplets), translation to proteins      88—90
Codons (triplets), triplet table over RNA alphabet      88—89
Coevolution of plant species      519—520 522—524 525
Collapse subtree mutation operator (GP)      431
Color attributes of turtle      462—463
Comma strategy, for EP evolution      325—326 331
Comma strategy, for ES evolution      254—255 261 274
Comma strategy, for GA evolution      168 171 190 191
Comma strategy, for GP evolution      373 374 376 390
Compact output form, for GA chromosomes      86
Compact output form, for RNA chromosomes      94
Competition, in artificial plant evolution      521—522 523
Competition, in GP      427—428
Compiling GP (CGP)      292
Completeness of GP building blocks      357
Complexity models, cellular automata as      440
Componentwise GA recombination      124
Componentwise GA recombination, binary      124—126
Componentwise GA recombination, discrete      126
Componentwise GA recombination, of haploid chromosomes      139
Componentwise multirecombination      126
Computer models of developmental programs      439—470 (see also cellular automata; Lindenmayer systems)
Computer models of developmental programs, cellular automata and cellular programming      440—449
Computer models of developmental programs, Lindenmayer systems      449—467 468
Computer programs as FSA      298—303
Computer Simulations with Mathematica      469
Conference on Evolutionary Programming      344
Conferences, on artificial life      470
Conferences, on evolution strategies      280
Conferences, on evolutionary computation      76—77
Conferences, on evolutionary programming      344
Conferences, on genetic algorithms      208—209
Conferences, on genetic programming      397
Conferences, on programming by evolution      294—295
Congress on Evolutionary Computation (CEC)      76—77 280 344
Context-free L-systems      450—456
Context-sensitive L-systems      456—458 473
Control programs, $\verb"AntTracker"$ example      401—404 406
Control programs, ES evolution control function      261—263
Control programs, in genomes      283
Correlated mutation      231
Covariance and selection theorem      207
Cross recombination of GA chromosomes      126—128
Cross recombination of GA chromosomes, crossover of nonhomologous chromosomes      158—161
Cross recombination of GA chromosomes, crosswise recombination      127
Cross recombination of GA chromosomes, duplication effects      155 156
Cross recombination of GA chromosomes, four-point crossover      128
Cross recombination of GA chromosomes, haploid chromosomes      135—137 138—139
Cross recombination of GA chromosomes, inverse recombination mask      127
Cross recombination of GA chromosomes, masked multipoint crossover      130—131
Cross recombination of GA chromosomes, masked one-point crossover      130
Cross recombination of GA chromosomes, multirecombination      131—133
Cross recombination of GA chromosomes, one-point crossover      127 148 149
Cross recombination of GA chromosomes, survival of      204—205
Cross recombination of GA chromosomes, triploid chromosomes      140—143
Cross recombination of GA chromosomes, using faces      148 149
Crossover of nonhomologous chromosomes      158—161
Crossover of nonhomologous chromosomes, one-point crossover with different crossover points      159—160
Crossover of nonhomologous chromosomes, recombination effects      160
Crossover of nonhomologous chromosomes, three-point crossover with different crossover points      161
Crossover of nonhomologous chromosomes, translocations between nonhomologous chromosomes      158—159
Crossover of nonhomologous chromosomes, two-point crossover with different crossover points      160—161
Cumulative selection      5—33 (see also string evolution example)
Cybernetic Solution Path of an Experimental Problem      279
Darwin, Charles, evolutionary process formulated by      2 57
Darwin, Charles, Origin of Species, The      51
Darwin, Charles, variational evolution concept of      1
Darwin, Erasmus      4
Davis, Lawrence      208
Dawkins, Richard      45 52
Decapsulation operator ($\verb"AntTracker"$)      408 421
Decoding, analogy to ribosome translation      92—93
Decoding, binary strings for genotypes      70—71
Decoding, genotypes in GA      174—176
Decoding, number decoding for strings      13—14
Defining length of a schema      194
Deleting, FSA states      307—309
Deleting, FSA transitions      311—313
Deletion GA operator      153—155
Deletion GA operator, chromosome with fragment loss      154—155
Deletion GA operator, deletion effects on natural chromosomes      150
Deletion GA operator, effect of      183 184
Deletion GA operator, examples of effects      155
Deletion GA operator, exons and introns      155
Deletion GA operator, haploid chromosomes      153—154
Deletion operator, $\verb"AntTracker"$      408 420 421
Deletion operator, ArtFlowers      498
Deletion operator, GA      see deletion GA operator
Deletion operator, L-system      477
Density function in ES mutation      219—220
Derivability of L-systems      450—451
Deussen, Oliver      526
Development, evolution as      3
Development, evolution vs      3
Development, ontogenetic      3—4
Development, phylogenetic      4
Developmental genes of biomorphs      45—46
Developmental programs      see artificial plant evolution; cellular automata; Lindenmayer systems
Dickson, S.      117
Differential fitness      58
Differential survival probability      162
1 2 3 4 5 6 7
blank
Ðåêëàìà
blank
blank
HR
@Mail.ru
       © Ýëåêòðîííàÿ áèáëèîòåêà ïîïå÷èòåëüñêîãî ñîâåòà ìåõìàòà ÌÃÓ, 2004-2024
Ýëåêòðîííàÿ áèáëèîòåêà ìåõìàòà ÌÃÓ | Valid HTML 4.01! | Valid CSS! Î ïðîåêòå